大数据开发笔记(四):Hive分区详解

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 在Hive Select查询中一般会扫描整个表内容,会消耗很多时间做没必要的工作。有时候只需要扫描表中关心的一部分数据,因此建表时引入了partition概念。

hive分区(partition)


一、背景


1、在Hive Select查询中一般会扫描整个表内容,会消耗很多时间做没必要的工作。有时候只需要扫描表中关心的一部分数据,因此建表时引入了partition概念。


2、分区表指的是在创建表时指定的partition的分区空间。


3、如果需要创建有分区的表,需要在create表的时候调用可选参数partitioned by,详见表创建的语法结构。


二、技术细节


1、一个表可以拥有一个或者多个分区,每个分区以文件夹的形式单独存在表文件夹的目录下。


2、表和列名不区分大小写。


3、分区是以字段的形式在表结构中存在,通过describe table命令可以查看到字段存在,但是该字段不存放实际的数据内容,仅仅是分区的表示。


4、建表的语法(建分区可参见PARTITIONED BY参数):


CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name [(col_name data_type [COMMENT col_comment], ...)] [COMMENT table_comment] [PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)] [CLUSTERED BY (col_name, col_name, ...) [SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS] [ROW FORMAT row_format] [STORED AS file_format] [LOCATION hdfs_path]


5、分区建表分为2种,一种是单分区,也就是说在表文件夹目录下只有一级文件夹目录。另外一种是多分区,表文件夹下出现多文件夹嵌套模式。


a、单分区建表语句:create table day_table (id int, content string) partitioned by (dt string);单分区表,按天分区,在表结构中存在id,content,dt三列。


b、双分区建表语句:create table day_hour_table (id int, content string) partitioned by (dt string, hour string);双分区表,按天和小时分区,在表结构中新增加了dt和hour两列。


表文件夹目录示意图(多分区表):

image.png


6、添加分区表语法(表已创建,在此基础上添加分区):


ALTER TABLE table_name ADD partition_spec [ LOCATION 'location1' ] partition_spec [ LOCATION 'location2' ] ... partition_spec: : PARTITION (partition_col = partition_col_value, partition_col = partiton_col_value, ...)


用户可以用 ALTER TABLE ADD PARTITION 来向一个表中增加分区。当分区名是字符串时加引号。例:


ALTER TABLE day_table ADD PARTITION (dt='2008-08-08', hour='08') location '/path/pv1.txt' PARTITION (dt='2008-08-08', hour='09') location '/path/pv2.txt';


7、删除分区语法:


ALTER TABLE table_name DROP partition_spec, partition_spec,...


用户可以用 ALTER TABLE DROP PARTITION 来删除分区。分区的元数据和数据将被一并删除。例:


ALTER TABLE day_hour_table DROP PARTITION (dt='2008-08-08', hour='09');

8、数据加载进分区表中语法:


LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]

例:


LOAD DATA INPATH '/user/pv.txt' INTO TABLE day_hour_table PARTITION(dt='2008-08- 08', hour='08'); LOAD DATA local INPATH '/user/hua/*' INTO TABLE day_hour partition(dt='2010-07- 07');

当数据被加载至表中时,不会对数据进行任何转换。Load操作只是将数据复制至Hive表对应的位置。数据加载时在表下自动创建一个目录,文件存放在该分区下。


9、基于分区的查询的语句:


SELECT day_table.* FROM day_table WHERE day_table.dt>= '2008-08-08';


10、查看分区语句:


hive> show partitions day_hour_table; OK dt=2008-08-08/hour=08 dt=2008-08-08/hour=09 dt=2008-08-09/hour=09


三、总结


1、在 Hive 中,表中的一个 Partition 对应于表下的一个目录,所有的 Partition 的数据都存储在最字集的目录中。


2、总的说来partition就是辅助查询,缩小查询范围,加快数据的检索速度和对数据按照一定的规格和条件进行管理。



相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
11天前
|
分布式计算 负载均衡 监控
大数据增加分区数量
【11月更文挑战第4天】
26 3
|
1月前
|
消息中间件 SQL 分布式计算
大数据-64 Kafka 高级特性 分区Partition 分区重新分配 实机实测重分配
大数据-64 Kafka 高级特性 分区Partition 分区重新分配 实机实测重分配
79 7
|
16天前
|
存储 安全 大数据
大数据水平分区增强可管理性
【11月更文挑战第2天】
26 5
|
16天前
|
存储 负载均衡 大数据
大数据水平分区提高查询性能
【11月更文挑战第2天】
26 4
|
15天前
|
存储 分布式计算 大数据
大数据减少单个分区的数据量
【11月更文挑战第3天】
34 2
|
17天前
|
存储 算法 大数据
大数据复合分区(Composite Partitioning)
【11月更文挑战第1天】
37 1
|
17天前
|
存储 大数据 数据管理
大数据垂直分区(Vertical Partitioning)
【11月更文挑战第1天】
28 1
|
17天前
|
存储 固态存储 大数据
大数据水平分区(Horizontal Partitioning)
【11月更文挑战第1天】
24 1
|
18天前
|
存储 大数据 OLAP
大数据数据分区技术
【10月更文挑战第26天】
51 2
|
1月前
|
消息中间件 JSON 大数据
大数据-65 Kafka 高级特性 分区 Broker自动再平衡 ISR 副本 宕机恢复再重平衡 实测
大数据-65 Kafka 高级特性 分区 Broker自动再平衡 ISR 副本 宕机恢复再重平衡 实测
68 4
下一篇
无影云桌面