用户指南—监控与告警—计算资源监控

简介: 为方便您掌握实例的运行状态,PolarDB-X提供监控查询功能。您可以在控制台上查看计算资源监控和存储资源监控信息。其中计算资源监控展示了实例计算层资源的性能数据,本文将介绍如何查看计算资源监控信息。

操作步骤

  1. 登录云原生分布式数据库控制台
  2. 在页面左上角选择目标实例所在地域。
  3. 实例列表页,单击PolarDB-X 2.0页签。
  4. 找到目标实例,单击实例ID。
  5. 在左侧导航栏中,单击监控与报警 > 计算资源监控
  6. 计算资源监控页面,您可以查看目标实例或节点的监控信息。
监控项 指标 说明
CPU cpu 实例计算节点CPU使用率的平均值。
内存 old 实例计算节点JVM Old Generation的内存使用率。内存使用率波动属于正常现象。
网络流量输入 netin 实例计算节点的网络输入流量的总和,单位为Kbps。存储节点返回数据到计算节点,会产生网络输入流量。
网络流量输出 netout 实例计算节点的网络输出流量的总和,单位为Kbps。计算节点发送物理SQL到存储节点,计算节点返回数据到应用,均会产生网络输出流量。
逻辑QPS lqps 实例每秒处理的SQL语句数目的总和。
逻辑RT lrt 实例对于每条SQL的平均响应时间。
前端连接数 con 应用到实例的连接总数。
活跃线程数 active 实例中用来执行SQL的线程数。
  1. 说明
    • 上述各监控项的数据采集周期均为1分钟。
    • 最多支持查看7天内的监控数据。
    • 查看实例性能监控:在实例页签右上角,设置性能监控查询的时间点,单击确定26.png
    • 查看节点性能监控:单击节点页签,从页面中间的下拉框中选择目标节点,并设置性能监控查询的时间点,单击确定27.png
目录
打赏
0
0
0
0
176
分享
相关文章
数据采集监控与告警:错误重试、日志分析与自动化运维
本文探讨了数据采集技术从“简单采集”到自动化运维的演进。传统方式因反爬策略和网络波动常导致数据丢失,而引入错误重试、日志分析与自动化告警机制可显著提升系统稳定性与时效性。正方强调健全监控体系的重要性,反方则担忧复杂化带来的成本与安全风险。未来,结合AI与大数据技术,数据采集将向智能化、全自动方向发展,实现动态调整与智能识别反爬策略,降低人工干预需求。附带的Python示例展示了如何通过代理IP、重试策略及日志记录实现高效的数据采集程序。
数据采集监控与告警:错误重试、日志分析与自动化运维
Kubernetes监控:Prometheus与AlertManager结合,配置邮件告警。
完成这些步骤之后,您就拥有了一个可以用邮件通知你的Kubernetes监控解决方案了。当然,所有的这些配置都需要相互照应,还要对你的Kubernetes集群状况有深入的了解。希望这份指南能帮助你创建出适合自己场景的监控系统,让你在首次发现问题时就能做出响应。
86 22
智能运维实战:Prometheus与Grafana的监控与告警体系
【10月更文挑战第26天】Prometheus与Grafana是智能运维中的强大组合,前者是开源的系统监控和警报工具,后者是数据可视化平台。Prometheus具备时间序列数据库、多维数据模型、PromQL查询语言等特性,而Grafana支持多数据源、丰富的可视化选项和告警功能。两者结合可实现实时监控、灵活告警和高度定制化的仪表板,广泛应用于服务器、应用和数据库的监控。
618 3
无痛入门Prometheus:一个强大的开源监控和告警系统,如何快速安装和使用?
Prometheus 是一个完全开源的系统监控和告警工具包,受 Google 内部 BorgMon 系统启发,自2012年由前 Google 工程师在 SoundCloud 开发以来,已被众多公司采用。它拥有活跃的开发者和用户社区,现为独立开源项目,并于2016年加入云原生计算基金会(CNCF)。Prometheus 的主要特点包括多维数据模型、灵活的查询语言 PromQL、不依赖分布式存储、通过 HTTP 拉取时间序列数据等。其架构简单且功能强大,支持多种图形和仪表盘展示模式。安装和使用 Prometheus 非常简便,可以通过 Docker 快速部署,并与 Grafana 等可
1428 2
智能运维实战:Prometheus与Grafana的监控与告警体系
【10月更文挑战第27天】在智能运维中,Prometheus和Grafana的组合已成为监控和告警体系的事实标准。Prometheus负责数据收集和存储,支持灵活的查询语言PromQL;Grafana提供数据的可视化展示和告警功能。本文介绍如何配置Prometheus监控目标、Grafana数据源及告警规则,帮助运维团队实时监控系统状态,确保稳定性和可靠性。
606 0
云监控:引领未来监控技术的新篇章
传统监控系统需要投入大量的人力物力进行建设和维护,而云监控则通过云计算平台的按需付费特性降低了建设和维护成本。用户只需根据实际需求购买相应的服务和资源即可实现监控功能,无需担心设备升级、维护等问题。
Serverless 应用引擎产品使用合集之sls日志告警调用函数计算,出现抛出的结果异常,是什么原因
阿里云Serverless 应用引擎(SAE)提供了完整的微服务应用生命周期管理能力,包括应用部署、服务治理、开发运维、资源管理等功能,并通过扩展功能支持多环境管理、API Gateway、事件驱动等高级应用场景,帮助企业快速构建、部署、运维和扩展微服务架构,实现Serverless化的应用部署与运维模式。以下是对SAE产品使用合集的概述,包括应用管理、服务治理、开发运维、资源管理等方面。
【阿里云弹性计算】ECS实例监控与告警系统构建:利用阿里云监控服务保障稳定性
【5月更文挑战第23天】在数字化时代,阿里云弹性计算服务(ECS)为业务连续性提供保障。通过阿里云监控服务,用户可实时监控ECS实例的CPU、内存、磁盘I/O和网络流量等指标。启用监控,创建自定义视图集中显示关键指标,并设置告警规则(如CPU使用率超80%),结合多种通知方式确保及时响应。定期维护和优化告警策略,利用健康诊断工具,能提升服务高可用性和稳定性,确保云服务的卓越性能。
317 1
SpringCloud微服务实战——搭建企业级开发框架(四十五):【微服务监控告警实现方式二】使用Actuator(Micrometer)+Prometheus+Grafana实现完整的微服务监控
无论是使用SpringBootAdmin还是使用Prometheus+Grafana都离不开SpringBoot提供的核心组件Actuator。提到Actuator,又不得不提Micrometer,从SpringBoot2.x开始,Actuator的功能实现都是基于Micrometer的。
636 57

热门文章

最新文章

下一篇
oss创建bucket
目录
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等