数据结构与算法——算法与算法分析

简介: 数据结构与算法——算法与算法分析

1.事前分析方法


       一个算法的运行时间:指一个算法在计算机上运行所消耗费的时间大致可以=计算机执行一种简单的操作(赋值,比较,移动等)所需要的时间与算法中进行的简单操作次数的乘积。


       算法运算时间=一个简单操作所需要的时间×简单操作次数


        也可以记为算法中的每一条语句的执行时间之和


               算法运行时间=每条语句的执行次数(语句频度)× 该语句执行一次所需要的时间


例如:

 for(j=0;j<=n;i++)                                //n+1
    {
        for(j=1;j<=n;j++)                          //n(n+1)
        c=[i][j]=0;
        for(k=0;k<n;k++)                          //n*n*(n+1)
        {
            c[i][j]=c[i][j]+a[i][j]*b[i][j];                //n*n*n
         }
    }

算法运算时间T(n)=2n^3+3n^2+2n+1


2.算法时间复杂度的渐进表示法:


       为了便于比较不同算法的时间效率,我们仅比较它的数量级


例如:


       两种不同算法时间消耗分别是:


               T1(n)=10n^2   与  T2(n)=5n^3


根据指数大爆炸可以知道   其n的指数越大其消耗时间越大所有越不好


算法时间复杂度:


                               若有某个辅助函数f(n),使n -->   无穷大,limT(n)/f(n)是不是那个与0的常数,则称f(n)是T(n)的同级函数,记作T(n)=O(f(n))为算法的时间复杂度。


算法时间复杂度的定义:


       算法中基本语句重复执行的次数是问题规模n的某个函数f(n),算法时间度量  记作:T(n)=Of(n)


       随着n的增大算法执行时间的增长率和f(n)的增长率相同,称为渐进时间复杂

1253c7315f0c4e27a2090e487022ec62.png

3. 时间复杂度的计算方法


 时间复杂的推导方法一般如下:


 第一步:用常数1取代运行时间中的所有加法常数。


 第二步:在修改后的运行次数函数中,只保留最高阶项。


 第三步:如果最高阶项存在且不是1,则去除与这个项相乘的常数。


 时间复杂度一般分为以下几种,分别是:


 (1)常数阶 首先顺序结构的时间复杂度。

main() 
{
    int sum=0,n=100;
    sum=(1+n)*n/2;
    printf(“%d”,sum);
}

算法的时间复杂度为O(1)。 这个算法的运行次数函数是f(n)=3。根据我们推导的方法,第一步就是把常数项3改为1。在保留最高阶项时发现,它根本没有最高阶项,所以这个算法的时间复杂度为O(1)。


 (2)线性阶 要确定某个算法的阶次,需要确定某个特定语句或某个语句集运行的次数。因此,要分析算法的复杂度,关键就是要分析循环结构的运行情况。  

int i; for(i=0;i<n;i++)
{ 
  /*时间复杂度为O(1)的程序步骤序列*/
}

(3)对数阶

int count=1;
while(count<n)
{ count=count*2; /*时间复杂度为O(1)的程序步骤序列*/} 

由于每次count乘以2之后,就距离n更近了一点。也就是说,有多少个2相乘后大于n,则会退出循环。由2x=n得到x=log2n。所以这个循环的时间复杂度为O(log2n)。  

(4)平方阶

inti,j; 
for(i=0;i<n;i++)
{ 
    for(j=0;j<n;j++)
    { /*时间复杂度为O(1)的程序步骤序列*/
     }
}

循环的时间复杂度等于循环体的复杂度乘以该循环运行的次数。间复杂度为O(n2)。


4. 总结


 本文主要讨论算法的时间复杂度,算法时间复杂度在数据结构中是比较难的问题,通过本文给出的计算时间复杂度的方法,能够比较容易掌握时间复杂的计算。


4.渐进空间时间复杂度

定义


对于一个算法,假设其问题的输入大小为n,那么我们可以用 O(f(n)) 来表示其算法复杂度(time complexity)。那么,渐进时间复杂度(asymptotic time complexity)就是当n趋于无穷大的时候,f(n) 得到的极限值。


可以理解为:我们通过计算得出一个算法的运行时间 T(n), 与T(n)同数量级的即幂次最高的O(F(n))即为这个算法的时间复杂度。例如:某算法的运行时间T(n) = n+10与n是同阶的(同数量级的),所以称T(n)=O(n)为该算法的时间复杂度。


算法的渐进分析就是要估计:n逐步增大时资源开销T(n)的增长趋势。


5.设计算法的过程

72ab251ad8b1460abd81aca76560a91b.png


相关文章
|
2月前
|
算法 数据处理 C语言
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
49 1
|
3月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
99 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
10天前
|
缓存 算法 搜索推荐
Java中的算法优化与复杂度分析
在Java开发中,理解和优化算法的时间复杂度和空间复杂度是提升程序性能的关键。通过合理选择数据结构、避免重复计算、应用分治法等策略,可以显著提高算法效率。在实际开发中,应该根据具体需求和场景,选择合适的优化方法,从而编写出高效、可靠的代码。
25 6
|
2月前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
2月前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
2月前
|
算法
数据结构之路由表查找算法(深度优先搜索和宽度优先搜索)
在网络通信中,路由表用于指导数据包的传输路径。本文介绍了两种常用的路由表查找算法——深度优先算法(DFS)和宽度优先算法(BFS)。DFS使用栈实现,适合路径问题;BFS使用队列,保证找到最短路径。两者均能有效查找路由信息,但适用场景不同,需根据具体需求选择。文中还提供了这两种算法的核心代码及测试结果,验证了算法的有效性。
110 23
|
2月前
|
算法
数据结构之蜜蜂算法
蜜蜂算法是一种受蜜蜂觅食行为启发的优化算法,通过模拟蜜蜂的群体智能来解决优化问题。本文介绍了蜜蜂算法的基本原理、数据结构设计、核心代码实现及算法优缺点。算法通过迭代更新蜜蜂位置,逐步优化适应度,最终找到问题的最优解。代码实现了单链表结构,用于管理蜜蜂节点,并通过适应度计算、节点移动等操作实现算法的核心功能。蜜蜂算法具有全局寻优能力强、参数设置简单等优点,但也存在对初始化参数敏感、计算复杂度高等缺点。
62 20
|
2月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
65 1
|
2月前
|
机器学习/深度学习 算法 C++
数据结构之鲸鱼算法
鲸鱼算法(Whale Optimization Algorithm,WOA)是由伊朗研究员Seyedali Mirjalili于2016年提出的一种基于群体智能的全局优化算法,灵感源自鲸鱼捕食时的群体协作行为。该算法通过模拟鲸鱼的围捕猎物和喷出气泡网的行为,结合全局搜索和局部搜索策略,有效解决了复杂问题的优化需求。其应用广泛,涵盖函数优化、机器学习、图像处理等领域。鲸鱼算法以其简单直观的特点,成为初学者友好型的优化工具,但同时也存在参数敏感、可能陷入局部最优等问题。提供的C++代码示例展示了算法的基本实现和运行过程。
58 0
|
3月前
|
并行计算 算法 IDE
【灵码助力Cuda算法分析】分析共享内存的矩阵乘法优化
本文介绍了如何利用通义灵码在Visual Studio 2022中对基于CUDA的共享内存矩阵乘法优化代码进行深入分析。文章从整体程序结构入手,逐步深入到线程调度、矩阵分块、循环展开等关键细节,最后通过带入具体值的方式进一步解析复杂循环逻辑,展示了通义灵码在辅助理解和优化CUDA编程中的强大功能。