Linux内核中断和异常分析(中)

简介:

在linux内核中,每一个能够发出中断请求的硬件设备控制器都有一条名为IRQ的输出线。所有现在存在的IRQ线都与一个名为可编程中断控制器的硬件电路的输入引脚相连,上次讲到单片机的时候,我就讲到了单片机中断的一些概念。我们现在来看一幅图,更好说明一个问题:

     这下面的这幅图是51单片机的一个关于矩阵键盘的学习的一个proteus的仿真电路图。

其中P3.2和P3.3为外部中断引脚,当可编程控制器(51MCU)收到外部中断响应的时候,会执行一些特定的操作,当然这需要开发者去编写一个中断初始化程序和一个中断服务程序。


那么,可编程中断控制器会做以下的操作:

1、监视IRQ线,我们可以理解就是监视单片机外部中断的IO口,检查产生的信号。如果有条或者两条以上的IRQ上产生信号,就选择引脚编号较小的IRQ线。

2、如果一个引发信号出现在IRQ线上:

   a.把接收到的引发信号转换成对应的向量。

   b.把这个向量存放在中断控制器的一个I/O端口,从而允许CPU通过数据总线读这个向量。

   c.把引发信号发送到处理器的INTR引脚,即会产生一个中断。

   d.等待,直到CPU通过把这个中断信号写进可编程中断控制器的一个I/O端口来确认它,当这种情况发送时,清INTR线。

3、最后一步返回到第一步继续监视,然后依次执行。


    当然,也存在着一些更加高级的可编程中断控制器,其中ARM算一种,Intel也是,等等。。。单片机算是最简单的一种。像多APIC系统的结构,会存在以下的一个图的关系:


中断信号通过IO引脚,然后通过中断控制器I2C总线与相应的CPU进行通信。

一般情况下,有两种分发的方式:

1、静态分发模式:IRQ信号传递给重定向表相应的项中所列出的本地APIC,然后中断立即传递诶一个特定的CPU,或者是一组CPU,或者是所有的CPU。其实这是广播模式的一种模型,接触过UNIX网络编程应该会知道。

2、动态分发模式:如果处理器正在执行最低优先级的进程,IRQ信号线就会传递给这种处理器的本地APIC。也就是说,在CPU内部有一个控制优先级的寄存器,用来计算当前运行进程的优先级。如果两个或者多个CPU共享最低优先级,那么就利用仲裁的技术在这些CPU之间分配负荷等等的形式。

上篇文章曾介绍异常的相关,异常有很多种,在8086处理器可以找到多达20种不同的异常,内核必须为每种异常提供一个专门的异常处理程序。对于某些异常,CPU控制单元会在开始执行异常处理程序前产生一个硬件出错码,并且压入内核态的堆栈中去。

     关于这个异常处理信息,我们有必要来了解以下perror这个函数。

perror( ) 用来将上一个函数发生错误的原因输出到标准设备(stderr)。参数 s 所指的字符串会先打印出,后面再加上错误原因字符串。此错误原因依照全局变量errno(这里的说法不准确,errno是一个宏,该宏返回左值) 的值来决定要输出的字符串。在库函数中有个errno变量,每个errno值对应着以字符串表示的错误类型。当你调用"某些"函数出错时,该函数已经重新设置了errno的值。perror函数只是将你输入的一些信息和现在的errno所对应的错误一起输出。
用法: void perror(const char *s); perror ("open_port");
我们写段代码来看看就知道了:

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
	FILE *filp ; 
	filp = fopen("txt","r"); 
	if(NULL == filp)
	{
		perror("没有相应的文件");
	}
	return 0 ;
}
运行结果:

在当前目录下,找不到txt这个文件,所以perror会根据相应的出错信息打印No such file or directory。


看了这个函数的应用,相信更会理解上面的异常的相关知识。当然还有更多的,比如段错误,段错误是最常见的,一些初学者在使用指针的时候,没有分配相应的空间,这时候给指针赋值,虽然没有语法错误,但可能会有警告。当程序运行的时候,就会自动退出并提示段错误(Segment fault),这一般是在linux上会出现这两个英语单词,在window的Devcpp上是这样,:


     段错误的产生原因有很多种,程序在进行递归的时候,如果没有相应的条件退出的话,程序一旦进行死循环递归之后就会产生爆栈错误,也就是栈被挤爆了,栈这个概念其实并不陌生。我们在写C语言程序的时候,一旦写了一个子函数,那就相当于建立了一个堆栈,一般情况下函数在执行完退出后堆栈是自动分配,自动销毁的,不用程序员去手动malloc申请内存再free释放内存。因为手动分配的内存是用了堆区的内存,而自动分配是在栈区进行分配的。在32位操作系统上,栈的大小就只有12M,所以写代码的时候,一定要记得防止爆栈错误的产生,特别是递归!在main函数中多写些子函数是有好处的,要养成良好的编程习惯。

     接下来的一篇,我将结合相应的内核驱动的代码实例来剖析linux内核中断与异常来作为文章的终结。欢迎持续关注Bruce.yang的嵌入式之旅!




  

目录
相关文章
|
4天前
|
算法 安全 Linux
探索Linux内核的虚拟内存管理
【5月更文挑战第20天】 在本文中,我们将深入探讨Linux操作系统的核心组成部分之一——虚拟内存管理。通过剖析其关键组件和运作机制,揭示虚拟内存如何提供高效的内存抽象,支持庞大的地址空间,以及实现内存保护和共享。文章将重点讨论分页机制、虚拟内存区域(VMAs)的管理、页面置换算法,并简要分析这些技术是如何支撑起现代操作系统复杂而多变的内存需求的。
|
2天前
|
存储 算法 Linux
【Linux】程序地址空间 -- 详解 & Linux 2.6 内核进程调度队列 -- 了解
【Linux】程序地址空间 -- 详解 & Linux 2.6 内核进程调度队列 -- 了解
|
3天前
|
算法 Linux 调度
【进程调度】Linux内核的进程调度队列--runqueue
【进程调度】Linux内核的进程调度队列--runqueue
|
3天前
|
缓存 网络协议 算法
Linux内核必读五本书籍(强烈推荐)
Linux内核必读五本书籍(强烈推荐)
27 0
|
9天前
|
NoSQL Ubuntu Linux
【操作系统】实验三 编译 Linux 内核
【操作系统】实验三 编译 Linux 内核
14 1
|
9天前
|
Linux Windows 编译器
|
9天前
|
存储 算法 Linux
【Linux】线程的内核级理解&&详谈页表以及虚拟地址到物理地址之间的转化
【Linux】线程的内核级理解&&详谈页表以及虚拟地址到物理地址之间的转化
|
9天前
|
安全 Linux
【Linux】详解用户态和内核态&&内核中信号被处理的时机&&sigaction信号自定义处理方法
【Linux】详解用户态和内核态&&内核中信号被处理的时机&&sigaction信号自定义处理方法
|
9天前
|
存储 Linux
【Linux】对信号产生的内核级理解
【Linux】对信号产生的内核级理解
|
9天前
|
消息中间件 算法 Linux
【Linux】对system V本地通信的内核级理解
【Linux】对system V本地通信的内核级理解