【数据结构】树与森林(二)

简介: 树与森林

3)层次遍历

  • 若树为非空,则从根节点开始,从上到下依次访问每一层的各个结点,在同一层中的结点,则按从左到右的顺序依次进行访问。

ABCDEFGHIJK

publicvoidlevelTraverse(CSTreeNodeT) {
if(T!=null) {
LinkQueueL=newLinkQueue();      //构建队列L.offer(T);                         //根节点入队列while(!L.isEmpty()) {
for(T=L.poll() ; T!=null ; T=T.nextisibling) {
System.out.print(T.data+" ");
if(T.firstChild!=null) {  //第一个孩子结点非空入队列L.offer(T.firstchild);
                }
            }
        }
    }
}

5.6.7 森林的遍历


  • 森林由3部分组成:
  1. 森林中第一棵树的根节点
  2. 森林中第一棵树的子树森林
  3. 森林中其他树构成的森林。
  • 森林的3中遍历:
  1. 先根遍历
  2. 后根遍历
  3. 层次遍历

1)先根遍历

  • 若森林不空,则可依下列次序进行遍历
  1. 访问森林中第一棵树的根节点
  2. 先序遍历第一课树中的子树森林
  3. 先序遍历除去第一棵树之后剩余的树构成的森林。
  • 也就是说:依次从左到右对森林中的每一颗树进行先根遍历。

image.png

先跟遍历顺序是:

ABCEDFGHIJKL

2)后根遍历

  • 若森林不空,则可依下列次序进行遍历
  1. 后根遍历第一棵树中的子树森林
  2. 访问森林中第一棵树的根节点
  3. 后根遍历除去第一棵树之后剩余的树构成的森林。
  • 也就是说:依次从左至右对森林中的每一棵树进行后根遍历。

image.png

后根遍历序列是:

BECDAGFIKLJH

4)层次遍历

  • 若森林为非空,则按从左到右的顺序对森林中每一颗树进行层次遍历。
  • 也就是说:依次从左至右对森林中的每一棵树进行层次遍历。

image.png

层次遍历序列:

ABCDEFGHIJKL

5.7 作业


image.png

相关文章
|
1月前
|
算法
数据结构之博弈树搜索(深度优先搜索)
本文介绍了使用深度优先搜索(DFS)算法在二叉树中执行遍历及构建链表的过程。首先定义了二叉树节点`TreeNode`和链表节点`ListNode`的结构体。通过递归函数`dfs`实现了二叉树的深度优先遍历,按预序(根、左、右)输出节点值。接着,通过`buildLinkedList`函数根据DFS遍历的顺序构建了一个单链表,展示了如何将树结构转换为线性结构。最后,讨论了此算法的优点,如实现简单和内存效率高,同时也指出了潜在的内存管理问题,并分析了算法的时间复杂度。
52 0
|
2月前
|
存储 算法 搜索推荐
探索常见数据结构:数组、链表、栈、队列、树和图
探索常见数据结构:数组、链表、栈、队列、树和图
123 64
|
27天前
|
存储 缓存 算法
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式,强调了合理选择数据结构的重要性,并通过案例分析展示了其在实际项目中的应用,旨在帮助读者提升编程能力。
53 5
|
1月前
|
存储 搜索推荐 算法
【数据结构】树型结构详解 + 堆的实现(c语言)(附源码)
本文介绍了树和二叉树的基本概念及结构,重点讲解了堆这一重要的数据结构。堆是一种特殊的完全二叉树,常用于实现优先队列和高效的排序算法(如堆排序)。文章详细描述了堆的性质、存储方式及其实现方法,包括插入、删除和取堆顶数据等操作的具体实现。通过这些内容,读者可以全面了解堆的原理和应用。
87 16
|
1月前
|
算法
数据结构之文件系统模拟(树数据结构)
本文介绍了文件系统模拟及其核心概念,包括树状数据结构、节点结构、文件系统类和相关操作。通过构建虚拟环境,模拟文件的创建、删除、移动、搜索等操作,展示了文件系统的基本功能和性能。代码示例演示了这些操作的具体实现,包括文件和目录的创建、移动和删除。文章还讨论了该算法的优势和局限性,如灵活性高但节点移除效率低等问题。
53 0
|
2月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
32 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
2月前
|
存储 编译器 C++
【初阶数据结构】掌握二叉树遍历技巧与信息求解:深入解析四种遍历方法及树的结构与统计分析
【初阶数据结构】掌握二叉树遍历技巧与信息求解:深入解析四种遍历方法及树的结构与统计分析
|
2月前
【高阶数据结构】二叉树进阶探秘:AVL树的平衡机制与实现详解(三)
【高阶数据结构】二叉树进阶探秘:AVL树的平衡机制与实现详解
|
2月前
【高阶数据结构】二叉树进阶探秘:AVL树的平衡机制与实现详解(二)
【高阶数据结构】二叉树进阶探秘:AVL树的平衡机制与实现详解
|
2月前
|
存储
【高阶数据结构】二叉树进阶探秘:AVL树的平衡机制与实现详解(一)
【高阶数据结构】二叉树进阶探秘:AVL树的平衡机制与实现详解