ai智能机器人调整识别策略

简介: ai智能机器人调整识别策略

在客户与语音识别系统进行多次会话过程中,系统具有智能调整识别策略,能够自动根据对话节点来动态调整语音识别策略,通过训练典型节点语言模型(如,开场白节点语言模型),在客户不同节点语音交互时,加载相应节点的语言模型与通用语言模型融合,共同处理用户输入,如图17所示。并且,系统也能够根据系统运行情况来动态调整语音识别策略,在系统较忙时(CPU占用较高)采用计算量较小但具有足够精度的策略以保证系统的响应速度,在系统不忙时(CPU占用较低)采用精度更高的策略以达到更优的识别结果,该功能在保障稳定运行的基础上充分利用系统的计算资源,有利于保护客户的设备投资。


语音识别呼叫日志



语音识别的呼叫日志在系统中有着非常重要的作用,该日志记录输入的音频、加载的语法、识别过程的中间结果、识别模块呼叫过程、识别使用的各种参数、识别结果、音频前瞻缓冲信息、断句方式以及当时的系统环境信息,这些数据显示在运营系统中,为效果分析和优化的基础和依据。


语音合成



语音合成,能够将输入文本实时转换成流畅、清晰、自然、具有表现力的语音数据,输出高质量的语音。


1.能够保证对文本中未登录词、多音字、特殊符号(如标点、数字)、韵律短语的智能分析和处理;


2.能够支持输入GB2312、GBK、Unicode、UTF-8等多种字符集以及普通文本等多种格式的文本信息;


3.能够提供预录音合成模板,对合成文本中符合语音模板固定成分的文本使用发音人预录语音,非固定成分使用合成语音,改进合成效果,满足更广泛的需求;


4.能够提供音量、语速、音高(基频)等多种合成参数的动态调整功能。

相关实践学习
达摩院智能语音交互 - 声纹识别技术
声纹识别是基于每个发音人的发音器官构造不同,识别当前发音人的身份。按照任务具体分为两种: 声纹辨认:从说话人集合中判别出测试语音所属的说话人,为多选一的问题 声纹确认:判断测试语音是否由目标说话人所说,是二选一的问题(是或者不是) 按照应用具体分为两种: 文本相关:要求使用者重复指定的话语,通常包含与训练信息相同的文本(精度较高,适合当前应用模式) 文本无关:对使用者发音内容和语言没有要求,受信道环境影响比较大,精度不高 本课程主要介绍声纹识别的原型技术、系统架构及应用案例等。 讲师介绍: 郑斯奇,达摩院算法专家,毕业于美国哈佛大学,研究方向包括声纹识别、性别、年龄、语种识别等。致力于推动端侧声纹与个性化技术的研究和大规模应用。
相关文章
|
23天前
|
数据采集 存储 人工智能
代理IP与AI自我进化:探索未来智能的新边界
在AI快速发展的今天,数据获取成为制约其进步的关键因素。代理IP技术通过匿名性和灵活性,帮助AI突破地域限制、绕过反爬虫机制,提升数据质量和模型训练效率,促进AI自我进化。本文通过实例和代码,探讨了代理IP在AI发展中的作用及潜在价值,强调了合理使用代理IP的重要性。
27 1
|
7天前
|
人工智能 移动开发 前端开发
WeaveFox:蚂蚁集团推出 AI 前端智能研发平台,能够根据设计图直接生成源代码,支持多种客户端和技术栈
蚂蚁团队推出的AI前端研发平台WeaveFox,能够根据设计图直接生成前端源代码,支持多种应用类型和技术栈,提升开发效率和质量。本文将详细介绍WeaveFox的功能、技术原理及应用场景。
346 66
WeaveFox:蚂蚁集团推出 AI 前端智能研发平台,能够根据设计图直接生成源代码,支持多种客户端和技术栈
|
17天前
|
机器学习/深度学习 人工智能 UED
OOTDiffusion:开源AI虚拟试衣工具,智能适配性别和体型自动调整衣物
OOTDiffusion是一款开源的AI虚拟试衣工具,能够智能适配不同性别和体型,自动调整衣物尺寸和形状,生成自然贴合的试穿效果。该工具支持半身和全身试穿模式,操作简单,适合服装电商、时尚行业从业者及AI试穿技术爱好者使用。
103 27
OOTDiffusion:开源AI虚拟试衣工具,智能适配性别和体型自动调整衣物
|
5天前
|
机器学习/深度学习 人工智能 算法
人工智能与机器人的结合:智能化世界的未来
人工智能与机器人的结合:智能化世界的未来
83 32
|
2天前
|
存储 人工智能 数据管理
|
17天前
|
机器学习/深度学习 Web App开发 人工智能
Amurex:开源AI会议助手,提供实时建议、智能摘要、快速回顾关键信息
Amurex是一款开源的AI会议助手,提供实时建议、智能摘要、快速回顾关键信息等功能,帮助用户提升会议效率。本文将详细介绍Amurex的功能、技术原理以及如何运行和使用该工具。
70 18
Amurex:开源AI会议助手,提供实时建议、智能摘要、快速回顾关键信息
|
12天前
|
人工智能 数据库 自然语言处理
拥抱Data+AI|DMS+AnalyticDB助力钉钉AI助理,轻松玩转智能问数
「拥抱Data+AI」系列文章由阿里云瑶池数据库推出,基于真实客户案例,展示Data+AI行业解决方案。本文通过钉钉AI助理的实际应用,探讨如何利用阿里云Data+AI解决方案实现智能问数服务,使每个人都能拥有专属数据分析师,显著提升数据查询和分析效率。点击阅读详情。
拥抱Data+AI|DMS+AnalyticDB助力钉钉AI助理,轻松玩转智能问数
|
11天前
|
人工智能 自然语言处理 机器人
机器人迈向ChatGPT时刻!清华团队首次发现具身智能Scaling Laws
清华大学研究团队在机器人操作领域发现了数据规模定律,通过大规模数据训练,机器人策略的泛化性能显著提升。研究揭示了环境和对象多样性的重要性,提出了高效的數據收集策略,使机器人在新环境中成功率达到约90%。这一发现有望推动机器人技术的发展,实现更广泛的应用。
62 26
|
15天前
|
机器学习/深度学习 人工智能 并行计算
转载:【AI系统】AI轻量化与并行策略
本文探讨了AI计算模式对AI芯片设计的重要性,重点分析了轻量化网络模型和大模型分布式并行两大主题。轻量化网络模型通过减少模型参数量和计算量,实现在资源受限设备上的高效部署;大模型分布式并行则通过数据并行和模型并行技术,解决大模型训练中的算力和内存瓶颈,推动AI技术的进一步发展。
转载:【AI系统】AI轻量化与并行策略
|
5天前
|
人工智能 安全 机器人
OpenAI重拾规则系统,用AI版机器人定律守护大模型安全
在人工智能领域,大语言模型(LLM)展现出强大的语言理解和生成能力,但也带来了安全性和可靠性挑战。OpenAI研究人员提出“规则基于奖励(RBR)”方法,通过明确规则引导LLM行为,确保其符合人类价值观和道德准则。实验显示,RBR方法在安全性与有用性之间取得了良好平衡,F1分数达97.1。然而,规则制定和维护复杂,且难以完全捕捉语言的多样性。论文:https://arxiv.org/pdf/2411.01111。
39 13

热门文章

最新文章