机器学习:欠拟合过拟合岭回归预测波士顿房价

本文涉及的产品
注册配置 MSE Nacos/ZooKeeper,118元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
云原生网关 MSE Higress,422元/月
简介: 机器学习:欠拟合过拟合岭回归预测波士顿房价

欠拟合过拟合

欠拟合:
    -训练集表现不好,而且训练集以外的数据也表现不好
    -原因:
        -数据特征太少
        -交叉验证:训练集结果表现不行
    -解决:增加数据特征
过拟合:
    -训练集表现很好,但在训练集以外的数据集表现不好
    -原因:
        -数据特征过多
        -测试集表现不行
    -解决:
        -进行特征选择,消除关联性大的特征
        -交叉验证
        -正则化

线性关系

非线性关系


特征选择

-过滤式:低方差特征

-嵌入式:正则化,决策树,神经网络


L2正则化

作用:可以使得W的每个元素都很小,都接近于0

优点:越小的参数说明模型越简单,越简单的模型则越不容易产生过拟合


回归:解决过拟合的方式

线性回归 容易出现过拟合,为了把训练数据表现的更好

L2正则化 Ridge岭回归,带有正则化的线性回归,解决过拟合


岭回归

sklearn.linear_model.Ridge

alpha 正则化力度 力度越大,模型越简单, 取值0~1 1~10

coef_ 回归系数


回归得到的回归系数更符合实际,更可靠,

另外,能让估计参数的波动范围变小,变得更稳定,

在存在病态数据偏多的研究中有较大的实用价值


代码示例

综合 线性回归,梯度下降,岭回归

# -*- coding: utf-8 -*-
from sklearn.datasets import load_boston
from sklearn.linear_model import LinearRegression, SGDRegressor, Ridge
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
# 加载数据
boston = load_boston()
# 训练集,测试集拆分
X_train, X_test, y_train, y_test = train_test_split(
    boston.data, boston.target, test_size=0.25)
# 数据标准化处理
# 特征值 标准化
std_x = StandardScaler()
X_train = std_x.fit_transform(X_train)
X_test = std_x.transform(X_test)
# 目标值 标准化
std_y = StandardScaler()
y_train = std_y.fit_transform(y_train.reshape(-1, 1))
y_test = std_y.transform(y_test.reshape(-1, 1))
# 正规方程
lr = LinearRegression()
lr.fit(X_train, y_train)
print(lr.coef_)
y_lr_predict = std_y.inverse_transform(lr.predict(X_test))
# 梯度下降
sgd = SGDRegressor()
sgd.fit(X_train, y_train)
print(sgd.coef_)
y_sgd_predict = std_y.inverse_transform(sgd.predict(X_test))
# 岭回归
ridge = Ridge()
ridge.fit(X_train, y_train)
print(ridge.coef_)
y_ridge_predict = std_y.inverse_transform(ridge.predict(X_test))
# 均方误差
lr_mse = mean_squared_error(std_y.inverse_transform(y_test), y_lr_predict)
sgd_mse = mean_squared_error(std_y.inverse_transform(y_test), y_sgd_predict)
ridge_mse = mean_squared_error(std_y.inverse_transform(y_test), y_ridge_predict)
print(lr_mse)
print(sgd_mse)
print(ridge_mse)
"""
20.887918065953176
21.059487199230684
20.87817117552608
"""
相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
相关文章
|
5月前
|
机器学习/深度学习 算法
【机器学习】过拟合和欠拟合怎么判断,如何解决?(面试回答)
本文介绍了如何通过观察训练误差和验证误差来判断模型是否出现过拟合或欠拟合,并提供了相应的解决方案,包括增加数据、调整模型复杂度、使用正则化技术等。
492 1
|
2月前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的过拟合现象及其解决方案
在机器学习领域,过拟合是一个常见且棘手的问题,它发生在模型过于复杂以至于捕捉到训练数据中的噪声而非信号时。本文将深入探讨过拟合的原因、影响以及如何通过技术手段有效缓解这一问题,旨在为读者提供一个全面而实用的指南。
|
3月前
|
机器学习/深度学习 算法 Python
深度解析机器学习中过拟合与欠拟合现象:理解模型偏差背后的原因及其解决方案,附带Python示例代码助你轻松掌握平衡技巧
【10月更文挑战第10天】机器学习模型旨在从数据中学习规律并预测新数据。训练过程中常遇过拟合和欠拟合问题。过拟合指模型在训练集上表现优异但泛化能力差,欠拟合则指模型未能充分学习数据规律,两者均影响模型效果。解决方法包括正则化、增加训练数据和特征选择等。示例代码展示了如何使用Python和Scikit-learn进行线性回归建模,并观察不同情况下的表现。
558 3
|
2月前
|
机器学习/深度学习
深入理解机器学习中的过拟合与正则化
深入理解机器学习中的过拟合与正则化
|
3月前
|
机器学习/深度学习 算法 数据挖掘
机器学习入门(二):如何构建机器学习模型,机器学习的三要素,欠拟合,过拟合
机器学习入门(二):如何构建机器学习模型,机器学习的三要素,欠拟合,过拟合
|
3月前
|
机器学习/深度学习 算法 API
【机器学习】正则化,欠拟合与过拟合(详细代码与图片演示!助你迅速拿下!!!)
【机器学习】正则化,欠拟合与过拟合(详细代码与图片演示!助你迅速拿下!!!)
|
5月前
|
机器学习/深度学习 数据采集 数据可视化
基于python 机器学习算法的二手房房价可视化和预测系统
文章介绍了一个基于Python机器学习算法的二手房房价可视化和预测系统,涵盖了爬虫数据采集、数据处理分析、机器学习预测以及Flask Web部署等模块。
167 2
基于python 机器学习算法的二手房房价可视化和预测系统
|
5月前
|
机器学习/深度学习
|
6月前
|
机器学习/深度学习 数据采集 人工智能
AI技术实践:利用机器学习算法预测房价
人工智能(Artificial Intelligence, AI)已经深刻地影响了我们的生活,从智能助手到自动驾驶,AI的应用无处不在。然而,AI不仅仅是一个理论概念,它的实际应用和技术实现同样重要。本文将通过详细的技术实践,带领读者从理论走向实践,详细介绍AI项目的实现过程,包括数据准备、模型选择、训练和优化等环节。
595 3
|
6月前
|
机器学习/深度学习 数据处理 Python
机器学习实战:房价预测项目
【7月更文挑战第13天】本文详细介绍了基于机器学习的房价预测项目的实战过程。从数据准备、特征工程、模型构建到结果评估,每一步都至关重要。通过合理的特征选择和模型优化,我们可以构建出性能优异的房价预测模型,为房地产行业的决策提供有力支持。未来,随着机器学习技术的不断发展和应用场景的不断拓展,房价预测模型将更加智能化和精准化。