Python数据分析与展示:pandas库统计分析函数-13

简介: Python数据分析与展示:pandas库统计分析函数-13

基本的统计分析函数

适用于Series和DataFrame类型

image.png


image.png

适用于Series类型

image.png


image.png

数据的累计统计分析

适用于Series和DataFrame类型,累计计算

image.png


image.png

适用于Series和DataFrame类型,滚动计算(窗口计算)

image.png

数据的相关性分析

两个事物,表示为X和Y,如何判断它们之间的存在相关性?


相关性

•X增大,Y增大,两个变量正相关

•X增大,Y减小,两个变量负相关

•X增大,Y无视,两个变量不相关


协方差

•协方差>0, X和Y正相关

•协方差<0, X和Y负相关

•协方差=0, X和Y独立无关


pearson相关系数

0.8‐1.0 极强相关

•0.6‐0.8 强相关

•0.4‐0.6 中等程度相关

•0.2‐0.4 弱相关

•0.0‐0.2 极弱相关或无相关

r取值范围[‐1,1]


适用于Series和DataFrame类型

image.png


pandas数据特征分析小结

一组数据的摘要

image.png


image.png

代码实例

# -*- coding: utf-8 -*-
# @File    : pandas_func.py
# @Date    : 2018-05-20
# pandas基本的统计分析函数
import pandas as pd
import numpy as np
# Series对象
s = pd.Series([9, 8, 7, 6], index=["a", "b", "c", "d"])
print(s)
"""
a    9
b    8
c    7
d    6
dtype: int64
"""
# 数据概要
print(s.describe())
"""
count    4.000000
mean     7.500000
std      1.290994
min      6.000000
25%      6.750000
50%      7.500000
75%      8.250000
max      9.000000
dtype: float64
"""
# 类型
print(type(s.describe()))
# <class 'pandas.core.series.Series'>
# 从概要中取数据
print(s.describe()["count"])
# 4.0
print(s.describe()["max"])
# 9.0
# DataFrame对象
fd = pd.DataFrame(np.arange(12).reshape(3, 4), index=["a", "b", "c"])
print(fd)
"""
   0  1   2   3
a  0  1   2   3
b  4  5   6   7
c  8  9  10  11
"""
# 概要
print(fd.describe())
"""
         0    1     2     3
count  3.0  3.0   3.0   3.0
mean   4.0  5.0   6.0   7.0
std    4.0  4.0   4.0   4.0
min    0.0  1.0   2.0   3.0
25%    2.0  3.0   4.0   5.0
50%    4.0  5.0   6.0   7.0
75%    6.0  7.0   8.0   9.0
max    8.0  9.0  10.0  11.0
"""
# 类型
print(type(fd.describe()))
# <class 'pandas.core.frame.DataFrame'>
# 取出列概要信息
print(fd.describe()[2])
"""
count     3.0
mean      6.0
std       4.0
min       2.0
25%       4.0
50%       6.0
75%       8.0
max      10.0
Name: 2, dtype: float64
"""
# 获取行
print(fd.describe().ix["count"])
"""
0    3.0
1    3.0
2    3.0
3    3.0
Name: count, dtype: float64
"""
# 数据的累计统计分析
print(fd)
"""
   0  1   2   3
a  0  1   2   3
b  4  5   6   7
c  8  9  10  11
"""
# 依次给出前1、2、…、n个数的和
print(fd.cumsum())
"""
    0   1   2   3
a   0   1   2   3
b   4   6   8  10
c  12  15  18  21
"""
# 依次给出前1、2、…、n个数的积
print(fd.cumprod())
"""
   0   1    2    3
a  0   1    2    3
b  0   5   12   21
c  0  45  120  231
"""
# 依次给出前1、2、…、n个数的最大值
print(fd.cummax())
"""
   0  1   2   3
a  0  1   2   3
b  4  5   6   7
c  8  9  10  11
"""
# 依次给出前1、2、…、n个数的最小值
print(fd.cummin())
"""
   0  1  2  3
a  0  1  2  3
b  0  1  2  3
c  0  1  2  3
"""
print(fd)
"""
   0  1   2   3
a  0  1   2   3
b  4  5   6   7
c  8  9  10  11
"""
# 相邻2个数求和
print(fd.rolling(2).sum())
"""
      0     1     2     3
a   NaN   NaN   NaN   NaN
b   4.0   6.0   8.0  10.0
c  12.0  14.0  16.0  18.0
"""
# 相邻3个数求和
print(fd.rolling(3).sum())
"""
      0     1     2     3
a   NaN   NaN   NaN   NaN
b   NaN   NaN   NaN   NaN
c  12.0  15.0  18.0  21.0
"""
# 实例,房价增幅与M2增幅的相关性
hprice = pd.Series([3.04, 22.93, 12.75, 22.6, 12.33],
                   index=["2008", "2009", "2010", "2011", "2012"])
m2 = pd.Series([8.18, 18.38, 9.13, 7.82, 6.69],
               index=["2008", "2009", "2010", "2011", "2012"])
print(hprice.corr(m2))
# 0.5239439145220387
"""
## pearson相关系数
0.8‐1.0 极强相关 
•0.6‐0.8 强相关 
•0.4‐0.6 中等程度相关 
•0.2‐0.4 弱相关 
•0.0‐0.2 极弱相关或无相关
"""
# 绘制成图
from matplotlib import pyplot as plt
plt.plot(hprice)
plt.plot(m2)
plt.savefig("price", dpi=600)
plt.show()

image.png

相关文章
|
26天前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
15天前
|
XML JSON 数据库
Python的标准库
Python的标准库
136 77
|
28天前
|
搜索推荐 Python
利用Python内置函数实现的冒泡排序算法
在上述代码中,`bubble_sort` 函数接受一个列表 `arr` 作为输入。通过两层循环,外层循环控制排序的轮数,内层循环用于比较相邻的元素并进行交换。如果前一个元素大于后一个元素,就将它们交换位置。
127 67
|
21天前
|
Python
Python中的函数是**一种命名的代码块,用于执行特定任务或计算
Python中的函数是**一种命名的代码块,用于执行特定任务或计算
45 18
|
13天前
|
数据可视化 DataX Python
Seaborn 教程-绘图函数
Seaborn 教程-绘图函数
43 8
|
16天前
|
XML JSON 数据库
Python的标准库
Python的标准库
44 11
|
16天前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
59 8
|
22天前
|
Python
Python中的函数
Python中的函数
36 8
|
24天前
|
安全 API 文件存储
Yagmail邮件发送库:如何用Python实现自动化邮件营销?
本文详细介绍了如何使用Yagmail库实现自动化邮件营销。Yagmail是一个简洁强大的Python库,能简化邮件发送流程,支持文本、HTML邮件及附件发送,适用于数字营销场景。文章涵盖了Yagmail的基本使用、高级功能、案例分析及最佳实践,帮助读者轻松上手。
34 4
|
29天前
|
监控 测试技术 数据库
Python中的装饰器:解锁函数增强的魔法####
本文深入探讨了Python语言中一个既强大又灵活的特性——装饰器(Decorator),它以一种优雅的方式实现了函数功能的扩展与增强。不同于传统的代码复用机制,装饰器通过高阶函数的形式,为开发者提供了在不修改原函数源代码的前提下,动态添加新功能的能力。我们将从装饰器的基本概念入手,逐步解析其工作原理,并通过一系列实例展示如何利用装饰器进行日志记录、性能测试、事务处理等常见任务,最终揭示装饰器在提升代码可读性、维护性和功能性方面的独特价值。 ####