楠竹11_社区达人页

个人头像照片
楠竹11
已加入开发者社区666

勋章 更多

个人头像照片
专家博主
专家博主
个人头像照片
星级博主
星级博主
个人头像照片
乘风问答官
乘风问答官
个人头像照片
技术博主
技术博主
个人头像照片
一代宗师
一代宗师

成就

已发布1472篇文章
1515条评论
已回答256个问题
2条评论
已发布0个视频
github地址

技术能力

兴趣领域
擅长领域
技术认证

暂时未有相关云产品技术能力~

共建共享

暂无精选文章
暂无更多信息

2024年09月

  • 09.01 07:20:09
    发表了文章 2024-09-01 07:20:09

    三模联盟,谷歌DeepMind缔造终身学习智能体!

    【9月更文挑战第1天】在人工智能领域,谷歌DeepMind提出了一种名为Diffusion Augmented Agents(DAAG)的创新框架,结合了大型语言模型、视觉语言模型和扩散模型,旨在提升强化学习中具身智能体的样本效率和迁移学习能力。DAAG通过利用扩散模型对智能体的过去经验进行重标记,使其与目标指令保持一致,从而减少新任务所需奖励标记数据量,提高学习效率。然而,该方法仍面临计算资源需求高、输出质量受限于输入数据质量和多样性等挑战。实验结果显示,DAAG能显著提高智能体的学习效率和迁移学习能力。

2024年08月

  • 08.31 08:01:15
    发表了文章 2024-08-31 08:01:15

    陶哲轩高徒撬动数十年难题,这个华人研究生联手MIT解谜等差数列!

    【8月更文挑战第31天】Mehtaab Sawhney与MIT研究人员通过引入新数学工具,改进了Szemerédi定理的界,使其更精确并拓宽了应用范围。他们证明了对于任意k(k≥5),存在一个正数c_k,使得等差数列个数r_k(N)满足不等式r_k(N) ≪ N * exp(-(log log N)^c_k)。这一成果不仅在理论上具有重要意义,在密码学和组合优化等领域也展现出广泛应用潜力。论文详细内容见:https://arxiv.org/abs/2402.17995。尽管如此,对于较小的k值,定理的界仍有待进一步完善。
  • 08.31 08:01:07
    发表了文章 2024-08-31 08:01:07

    跨平台多模态智能体基准测试来了!但全班第一只考了35.26分

    【8月更文挑战第31天】近日,Tianqi Xu等研究者在arXiv发布了题为《CRAB: Cross-environment Agent Benchmark for Multimodal Language Model Agents》的论文,提出了一种全新的智能体基准测试框架CRAB,旨在解决现有MLM智能体交互环境基准测试的局限性。CRAB支持跨环境任务,提供细粒度评价方法及高效的任务构建机制,并包含100个跨平台任务的Crab Benchmark-v0。实验结果显示,GPT-4o单智能体在该基准测试中表现最佳,任务完成率达35.26%。CRAB为未来跨环境智能体研究提供了重要参考。
  • 08.31 08:00:52
    发表了文章 2024-08-31 08:00:52

    谷歌发布大模型数据筛选方法:效率提升13倍,算力降低10倍

    【8月更文挑战第31天】近日,谷歌发布了一项名为多模态对比学习联合示例选择(JEST)的研究成果,旨在优化大模型预训练过程中的数据筛选。JEST通过联合选择数据批次而非独立选择示例,利用多模态对比目标揭示数据间的依赖关系,提高了学习效率。实验表明,JEST能显著加速训练并降低计算成本,最多减少13倍迭代次数和10倍计算量。这一成果有望推动大模型预训练更加高效和经济。论文详情见:https://arxiv.org/abs/2406.17711。
  • 08.30 08:09:46
    发表了文章 2024-08-30 08:09:46

    DeepMind机器人打乒乓球,正手、反手溜到飞起,全胜人类初学者

    【8月更文挑战第30天】DeepMind团队近日在机器人乒乓球领域取得了重大突破,其研发的机器人在与人类初学者的对战中表现出色,展现了惊人的技术水平和适应能力。这项成果不仅彰显了人工智能在体育竞技中的巨大潜力,还引发了关于AI与人类技能关系的广泛讨论。尽管存在一些挑战,如学习能力和成本问题,但该技术在训练、娱乐等方面的应用前景值得期待。论文详情见【https://arxiv.org/pdf/2408.03906】。
  • 08.30 08:09:39
    发表了文章 2024-08-30 08:09:39

    ICML 2024:人物交互图像,现在更懂你的提示词了,北大推出基于语义感知的人物交互图像生成框架

    【8月更文挑战第30天】在计算机视觉和机器学习领域,人物交互图像生成一直充满挑战。然而,北京大学团队在ICML 2024上提出的SA-HOI(Semantic-Aware Human Object Interaction)框架带来了新突破。该框架通过评估人物姿态质量和检测交互边界区域,结合去噪与细化技术,显著提升了生成图像的合理性与质量。广泛实验表明,SA-HOI在多样化和细粒度的人物交互类别上表现出色,为该领域提供了新的解决方案。尽管存在数据集质量和计算复杂度等局限,未来仍有很大改进空间和应用潜力。
  • 08.30 08:09:27
    发表了文章 2024-08-30 08:09:27

    清华研究登Nature,首创全前向智能光计算训练架构,戴琼海、方璐领衔

    【8月更文挑战第30天】清华大学研究人员在《自然》杂志上发表了一项开创性成果,提出了一种全前向智能光计算训练架构,解决了传统光学AI方法依赖电子计算机模拟和优化的问题,实现了光学系统的自学习和自设计。该架构通过将光学系统映射到参数化神经网络中,消除了反向传播需求,展示了在多个领域的广泛应用前景,如深度光学神经网络和高分辨率散射成像等。这一成果为光学AI的发展开辟了新道路,但实际应用中仍需克服一些挑战。论文详情见:https://www.nature.com/articles/s41586-024-07687-4
  • 08.29 07:58:23
    发表了文章 2024-08-29 07:58:23

    Llama3训练每3小时崩一次?豆包大模型、港大团队为脆皮万卡训练提效

    【8月更文挑战第29天】豆包大模型与香港大学团队合作研发的ByteCheckpoint系统,旨在应对大语言模型(LLM)开发中的数据规模庞大、计算资源昂贵及训练过程不稳定的挑战。该系统通过统一检查点机制、细粒度资源管理和多模态数据处理等创新技术,显著提升了LLM的训练效率和模型性能,并已在多个实际场景中取得显著效果。
  • 08.29 07:58:02
    发表了文章 2024-08-29 07:58:02

    准确率达60.8%,浙大基于Transformer的化学逆合成预测模型,登Nature子刊

    【8月更文挑战第29天】浙江大学团队在《Nature》子刊上发表的论文介绍了一款名为EditRetro的基于Transformer架构的化学逆合成预测模型,其准确率高达60.8%,为化学合成领域带来了革命性的变化。此模型无需依赖传统化学反应模板,具备更强的泛化能力和多样化合成路线生成能力,在药物研发和材料科学领域展现出巨大潜力,尽管仍存在一定的错误率和计算资源需求高等挑战。论文详情见:https://www.nature.com/articles/s41467-024-50617-1。
  • 08.29 07:57:54
    发表了文章 2024-08-29 07:57:54

    上交、智源、北大等提出空间大模型SpatialBot

    【8月更文挑战第29天】近年来,人工智能技术迅猛发展,视觉语言模型(VLMs)在2D图像理解上取得显著成就,但在空间理解方面仍面临挑战。上交、智源、北大等机构的研究人员提出了结合RGB和深度图像的空间大模型SpatialBot,以提升空间理解精度。通过使用包含多层次深度信息的SpatialQA数据集进行训练,并基于全面评估基准SpatialBench测试,SpatialBot在多个任务中表现出色,显著提升了空间理解能力。然而,其应用仍受限于部署成本和数据集泛化能力等问题。论文链接: https://arxiv.org/abs/2406.13642
  • 08.28 08:19:02
    发表了文章 2024-08-28 08:19:02

    八问八答搞懂Transformer内部运作原理

    【8月更文挑战第28天】这篇名为“Transformer Layers as Painters”的论文通过一系列实验,深入探讨了Transformer模型内部不同层级的信息处理机制。研究发现,中间层级在表示空间上具有一致性,但功能各异,且模型对层级的去除或重排表现出较强的鲁棒性。此外,论文还分析了层级顺序、并行执行及循环等因素对模型性能的影响,揭示了不同任务下层级顺序的重要性差异,并指出随机化层级顺序和循环并行化对性能损害最小。
  • 08.28 08:18:51
    发表了文章 2024-08-28 08:18:51

    ACL 2024 Oral:大模型也会被忽悠?揭秘AI的信念之旅

    【8月更文挑战第28天】清华大学、上海交通大学、斯坦福大学和南洋理工大学的研究团队最新研究表明,即使是在训练过程中积累了大量知识的大语言模型(LLMs),如ChatGPT和GPT-4,在面对误导性信息时仍可能产生错误信念。研究者为此创建了Farm数据集,以系统性地生成误导信息并测试LLMs在说服性对话中的表现。结果显示,即使是先进如GPT-4,其信念也有20.7%的概率被改变。该研究不仅揭示了LLMs潜在的脆弱性,还提供了评估其鲁棒性的方法,对未来提升LLMs的安全性和准确性具有重要启示作用。论文详细内容可见[此处链接]。
  • 08.28 08:18:44
    发表了文章 2024-08-28 08:18:44

    AI画家的滑铁卢:为什么冰可乐不愿意住进茶杯里?

    【8月更文挑战第28天】近年来,文本到图像的扩散模型在AI领域取得显著进展,但在生成图像与文本描述的一致性上仍存在问题,特别是对于复杂或不常见的组合。例如,提示“装着冰可乐的茶杯”常被错误生成为玻璃杯。这种现象称为潜在概念错位(LC-Mis)。为解决这一问题,研究人员利用大型语言模型(LLMs)分析文本提示并指导图像生成,同时开发自动化管道对齐潜在语义空间,显著提升了模型的准确性和鲁棒性。然而,该方法仍需大量计算资源且对某些复杂提示效果有限。论文链接:[https://arxiv.org/abs/2408.00230](https://arxiv.org/abs/2408.00230)。
  • 08.27 15:14:09
    发表了文章 2024-08-27 15:14:09

    70倍极致压缩!大模型的检查点再多也不怕

    【8月更文挑战第27天】ExCP是一种新提出的框架,旨在解决大型语言模型(LLM)训练过程中计算和存储方面的挑战。该框架通过高效地压缩训练检查点,在显著减少存储需求的同时保持几乎无损的性能。ExCP首先计算相邻检查点间的残差以提取关键信息,并采用权重-动量联合收缩方法进一步去除冗余参数。此外,它还运用非均匀量化技术进一步压缩检查点存储。在不同规模的模型上测试显示,ExCP能大幅降低存储需求,如对Pythia-410M模型实现了70倍的压缩比,且保持了原始模型的准确性。ExCP的优势包括几乎无损的性能、广泛的适用性和高效的压缩算法。
  • 08.27 15:13:56
    发表了文章 2024-08-27 15:13:56

    一文看尽LLM对齐技术:RLHF、RLAIF、PPO、DPO……

    【8月更文挑战第27天】本文全面回顾了近期大型语言模型(LLMs)领域内提升模型与人类价值观一致性的重要进展与挑战。尽管自监督学习及大规模预训练等技术推动了LLMs的快速发展,但如何避免生成不当内容仍是难题。文中系统地将现有研究分为奖励模型、反馈机制、强化学习策略及优化方法四大主题,并深入探讨各技术路径的创新点与局限性,如RLHF、RLAIF等方法。旨在为读者提供清晰的领域概览,促进未来研究发展。[论文链接](https://arxiv.org/pdf/2407.16216)
  • 08.27 15:13:48
    发表了文章 2024-08-27 15:13:48

    小技巧大功效,仅阅读两次提示让循环语言模型超越Transformer++

    【8月更文挑战第27天】斯坦福与布法罗大学的研究显示,通过"Just-Read-Twice"(JRT)策略,循环语言模型(RNNs)在多项任务上的表现超越了行业标杆Transformer++模型。JRT策略让RNNs在处理信息时进行两次读取,有效解决长上下文记忆难题,显著提升了性能。实验覆盖FDA、SQUAD等多个任务,均取得明显成效。论文已发布于arXiv。
  • 08.26 14:51:21
    回答了问题 2024-08-26 14:51:21
  • 08.26 14:43:20
    回答了问题 2024-08-26 14:43:20
  • 08.26 14:39:12
    回答了问题 2024-08-26 14:39:12
  • 08.26 11:06:18
    回答了问题 2024-08-26 11:06:18
  • 08.26 11:02:03
    回答了问题 2024-08-26 11:02:03
  • 08.26 08:52:13
    发表了文章 2024-08-26 08:52:13

    阿里轨迹可控版Sora,告别抽卡,让视频生成更符合物理规律

    【8月更文挑战第26天】阿里团队新推出的Tora视频生成模型是对先前Sora模型的重要升级。Tora通过引入轨迹控制机制,极大提升了视频中物体运动的真实性和准确性。其核心技术包括轨迹提取器、运动指导融合器及空间时间扩散变换器,共同确保视频既高质量又流畅。实验表明,Tora在清晰度、细节表现力及运动轨迹控制上均有显著进步。尽管如此,模型训练复杂度和轨迹理解能力仍有待优化。[论文](https://arxiv.org/pdf/2407.21705)
  • 08.26 08:52:01
    发表了文章 2024-08-26 08:52:01

    首届大模型顶会COLM 高分论文:偏好搜索算法PairS,让大模型进行文本评估更高效

    【8月更文挑战第26天】在人工智能领域,尽管大型语言模型(LLMs)作为自动评估工具展现了巨大潜力,但在自然语言生成质量评估中仍存偏见问题,且难以确保一致性。为解决这一挑战,研究者开发了Pairwise-preference Search(PairS)算法,一种基于不确定性的搜索方法,通过成对比较及不确定性引导实现高效文本排名,有效减少了偏见、提升了评估效率和可解释性。PairS在多项任务中表现出色,相较于传统评分法有显著提升,为自然语言处理评估提供了新思路。更多详情参阅论文:https://arxiv.org/abs/2403.16950。
  • 08.26 08:51:53
    发表了文章 2024-08-26 08:51:53

    Meta朱泽园揭秘大模型内心世界:不同于人类的2级推理

    【8月更文挑战第26天】近期,Meta AI的研究者们在arXiv发布了一篇题为《语言模型的物理学:第2.1部分,小学数学和隐藏推理过程》的论文。该研究通过一系列实验揭示了大型语言模型(LLMs)在解决数学问题时的隐藏推理机制,并探讨了LLMs是否具有真正的推理能力及其实现方式是否与人类类似。研究发现LLMs不仅能记忆解题模式,还能进行适应性调整,表现出独特的二级推理过程。尽管其方法不同于人类,但在解决数学问题上能获得同样甚至更好的效果。此外,研究还指出改进训练数据质量、优化模型结构以及探索LLMs与其他AI技术的融合将是未来研究的重要方向。
  • 08.25 21:46:01
    发表了文章 2024-08-25 21:46:01

    DeepMind研究成本大起底,一篇ICML论文烧掉1290万美元

    【8月更文挑战第25天】近期,Katie Everett等11位作者发布了一篇题为《Scaling Exponents Across Parameterizations and Optimizers》的论文,已提交至ICML。该研究探讨了从小型到大型模型的扩展过程中,如何通过精确调整算法和架构细节实现有效扩展。作者们通过广泛的实证研究,包括训练了数以万计的不同规模的模型,提出了一种新的参数化视角及Adam-atan2优化器版本。然而,这项研究的成本高达1290万美元,引发了关于资源分配与研究价值的争议。论文链接: https://arxiv.org/abs/2407.05872。
  • 08.25 21:45:53
    发表了文章 2024-08-25 21:45:53

    OpenDevin出技术报告了,大模型Agent开发者必读

    【8月更文挑战第25天】近期发布的OpenDevin技术报告备受瞩目,此报告由来自伊利诺伊大学香槟分校、卡内基梅隆大学等顶尖学府的研究员联合撰写。OpenDevin作为一个社区驱动的开放平台,旨在为AI软件开发者提供一个模拟通用代理的强大工具。平台采用事件流架构促进用户界面、代理与环境间的交互,并构建了包含沙盒操作系统和网络浏览器的任务执行环境。此外,它支持多代理协同作业及一系列评估标准,目前已涵盖15个评估基准。作为拥有160多位贡献者的社区项目,OpenDevin展现了极高的灵活性和安全性,同时也面临着技术门槛和进一步研发等挑战。
  • 08.25 21:45:45
    发表了文章 2024-08-25 21:45:45

    苹果让大模型学会偷懒:更快吐出第一个token,准确度还保住了

    【8月更文挑战第25天】苹果公司在AI领域取得重要进展,推出了一种名为LazyLLM的新方法,该方法专注于提升大型语言模型(LLM)在处理长文本时的推理效率。LazyLLM采用动态token修剪技术,能够在处理过程中灵活选择关键的上下文信息进行计算,避免了不必要的计算开销。这种方法不仅能显著加快LLM的响应速度,还能保持甚至提升模型准确度。多项实验验证了其在不同任务上的有效性和实用性。尽管如此,LazyLLM仍面临模型复杂度、适用范围等方面的挑战。论文已发布于[这里](https://arxiv.org/abs/2407.14057)。
  • 08.24 06:27:25
    发表了文章 2024-08-24 06:27:25

    CMU&清华新作:让LLM自己合成数据来学习,特定任务性能同样大幅提升

    【8月更文挑战第24天】近期研究提出SELF-GUIDE,一种创新方法,旨在通过大型语言模型(LLMs)自动生成特定任务数据并用于自我微调,以克服其在特定任务上的性能局限。SELF-GUIDE分为三个阶段:数据合成、模型微调及性能评估。通过向目标LLM提供适当提示生成高质量合成数据,并用于微调以提升特定任务表现。实验证明,该方法在Natural Instructions V2等多个基准测试中显著提升了分类与生成任务性能。SELF-GUIDE不仅有效提高性能,还具备高数据效率,减少对外部数据依赖。然而,生成数据质量受限于LLM能力,且并非适用于所有任务。
  • 08.24 06:27:14
    发表了文章 2024-08-24 06:27:14

    还没排上SearchGPT?比Perplexity更好用的国产开源平替了解一下?

    【8月更文挑战第24天】近日发布的一项研究成果提出了一种革新性的信息检索系统——MindSearch,该系统通过模仿人脑思维方式,有效解决了传统信息检索方法面对复杂查询时的不足。MindSearch利用多代理框架,将用户查询拆解成子问题逐步扩展查询图谱,实现复杂查询的精准定位;通过多层次信息检索,整合不同网页中的相关数据,提高信息提取的准确率;并且能高效处理大规模网页,3分钟内即可检索300多个网页。实验显示,MindSearch不仅提升了响应的深度与广度,还在封闭及开放式问答中表现出色,更符合用户的偏好。不过,MindSearch仍面临查询意图理解、噪音处理及可扩展性等方面的挑战。
  • 08.24 06:27:02
    发表了文章 2024-08-24 06:27:02

    ICML 2024:复杂组合3D场景生成,LLMs对话式3D可控生成编辑框架来了

    【8月更文挑战第24天】近年来,3D内容生成技术为虚拟现实和游戏领域带来革新,但仍面临处理复杂场景和多对象交互的挑战。为此,研究者提出了Layout-guided Gaussian Splatting (LGS)框架,结合大型语言模型(LLMs)和扩散模型,实现高质量3D场景生成。LGS通过LLMs提取文本描述中的实例关系并转化为布局,再使用扩散模型和自适应几何控制技术优化3D高斯表示,生成更准确、细腻的场景。实验表明,LGS在复杂场景生成方面表现优异,但计算成本和训练时间较长,且主要针对静态场景。论文详情参见:https://arxiv.org/pdf/2402.07207
  • 08.23 08:06:50
    发表了文章 2024-08-23 08:06:50

    揭秘!47页文档拆解苹果智能,从架构、数据到训练和优化

    【8月更文挑战第23天】苹果公司发布了一份47页的研究文档,深入解析了其在智能基础语言模型领域的探索与突破。文档揭示了苹果在此领域的雄厚实力,并分享了其独特的混合架构设计,该设计融合了Transformer与RNN的优势,显著提高了模型处理序列数据的效能与表现力。然而,这种架构也带来了诸如权重平衡与资源消耗等挑战。苹果利用海量、多样的高质量数据集训练模型,但确保数据质量及处理噪声仍需克服。此外,苹果采取了自监督与无监督学习相结合的高效训练策略,以增强模型的泛化与稳健性,但仍需解决预训练任务选择及超参数调优等问题。
  • 08.23 08:06:24
    发表了文章 2024-08-23 08:06:24

    越狱事件频发,如何教会大模型迷途知返而不是将错就错?

    【8月更文挑战第23天】论文提出了一种名为Decoupled Refusal Training(DeRTa)的新方法,旨在提升LLMs的安全性能。DeRTa通过识别并解决安全调优数据中的拒绝位置偏差来增强模型拒绝生成不安全内容的能力。它包括最大似然估计与有害响应前缀及强化转换优化两个核心部分,分别训练模型早期识别并避免不安全内容以及始终保持从有害状态向安全状态的转变。经过广泛实验评估,DeRTa方法在LLaMA3和Mistral模型上的表现显著优于基线,在多种攻击场景下展现出了更好的安全性。尽管如此,DeRTa方法在实际应用中仍面临复杂性和持续安全性维护等挑战。
  • 08.23 08:05:58
    发表了文章 2024-08-23 08:05:58

    只要一张图就能还原绘画过程,这篇论文比爆火的Paints-UNDO实现得更早

    【8月更文挑战第23天】近期,由新加坡国立大学等高校联合发布的论文"ProcessPainter: Learn Painting Process from Sequence Data"引起热议。该研究利用机器学习技术探索绘画过程的理解与生成,为艺术教育提供新视角。ProcessPainter采用创新方法,根据文本描述生成逼真绘画过程视频,通过数据驱动方案、绘画LoRA模型及艺术作品复制网络等关键技术实现目标。实验证明其生成结果具有高度艺术性和可控性。尽管面临一些挑战,该成果在绘画教学和数字艺术领域展现出广泛应用潜力。
  • 08.22 08:23:37
    发表了文章 2024-08-22 08:23:37

    关于大模型越狱的多种方式,有这些防御手段

    【8月更文挑战第22天】在AI领域,大语言模型与视觉-语言模型显著提升了自然语言处理及视觉任务能力,但同时也引发了严重的安全与伦理问题,特别是大模型越狱现象。越狱可通过梯度、进化、演示、规则或多智能体等方式实现,利用模型弱点操纵其输出。针对此威胁,研究者提出包括提示检测、扰动、演示、生成干预及响应评估等多种防御策略,旨在增强模型安全性与可靠性。然而,攻击手段的多样性和有效性评估构成了主要挑战。[论文](https://arxiv.org/pdf/2407.01599)详细探讨了这些问题。
  • 08.22 08:23:30
    发表了文章 2024-08-22 08:23:30

    1890美元,就能从头训练一个还不错的12亿参数扩散模型

    【8月更文挑战第22天】近期,索尼AI与加州大学河滨分校的研究者共同发表了一篇论文,介绍了一种在极低预算下训练大规模扩散模型的新方法。扩散模型常用于高质量图像生成,但高昂的训练成本往往构成障碍。研究团队通过实施“延迟掩码”策略,即训练时随机遮挡图像的大部分区域以减少计算需求,并利用轻量级块混合器预处理图像,显著降低了训练成本。他们仅花费1890美元便成功训练出拥有12亿参数的模型,该模型在COCO数据集上实现了12.7的FID分数,且成本远低于现有技术。尽管如此,该方法仍面临性能差距及合成数据偏见等挑战。
  • 08.22 08:23:06
    发表了文章 2024-08-22 08:23:06

    FBI-LLM低比特基础大语言模型来了,首个完全从头训练的二值化语言模型

    【8月更文挑战第22天】《FBI-LLM:通过自回归蒸馏从头开始扩展全二值化大语言模型》由Ma等学者发布于arXiv。该研究呈现了首个完全从头训练的全二值化大语言模型FBI-LLM,在不牺牲性能的前提下大幅降低计算资源需求。通过自回归蒸馏技术,FBI-LLM在多种任务上展现出与高精度模型相当的表现,为二值化模型的发展开辟新路径,并有望推动专用硬件的进步。研究者公开了所有相关资源以促进领域内的进一步探索。
  • 08.21 12:27:00
    发表了文章 2024-08-21 12:27:00

    87.8%准确率赶超GPT-4o登顶!谷歌DeepMind发布自动评估模型FLAMe

    【8月更文挑战第21天】谷歌DeepMind推出的FLAMe(Foundational Large Autorater Models)是一种基于深度学习的自动评估模型,旨在通过分析输入文本与参考答案的差异来评估大型语言模型(LLMs)的输出质量。FLAMe采用多任务学习方法,在涵盖500万个手工评分的100多种质量评估任务上训练,展现出强大的泛化能力。在RewardBench基准测试中,FLAMe以87.8%的准确率超越GPT-4等先进模型。这一突破不仅降低了人工评估成本,还提高了评估效率,为自然语言处理等领域带来革新。
  • 08.21 12:26:44
    发表了文章 2024-08-21 12:26:44

    ACM MM2024:对比学习滥用隐私数据!中科院等发布多步误差最小化方法

    【8月更文挑战第21天】在ACM MM2024会议中,中科院等机构提出多步误差最小化(MEM)方法,针对对比学习处理多模态数据时的隐私风险。通过优化图像噪声和文本触发器,MEM能有效生成不可学习样本,误导模型学习错误模式,显著降低隐私泄露风险,并展现出高度的模型间可转移性。此方法拓宽了隐私保护技术的应用范围,同时面对计算成本与触发器选择等挑战。论文详述可见:https://arxiv.org/abs/2407.16307。
  • 08.21 12:26:35
    发表了文章 2024-08-21 12:26:35

    KDD 2024:零样本即可时空预测!港大、华南理工等发布时空大模型UrbanGPT

    【8月更文挑战第21天】UrbanGPT是由香港大学等机构研发的时空大模型,针对城市管理中因数据稀缺导致的预测难题,通过时空依赖编码器与指令调整技术实现强大的泛化能力。此模型能在多种城市任务中无需样本进行准确预测,如交通流量和人群流动等,有效应对数据收集难的问题,在零样本场景下表现优异,为智慧城市管理提供了有力工具。[论文](https://arxiv.org/abs/2403.00813)
  • 08.20 08:36:04
    发表了文章 2024-08-20 08:36:04

    4轮暴训,Llama 7B击败GPT-4!Meta等让LLM分饰三角自评自进化

    【8月更文挑战第20天】近期,Meta等机构提出了一项让大型语言模型(LLM)自我评估与改进的研究,通过“Meta-Rewarding”方法,使模型分饰生成、评估及改进三角色,实现了高效自我迭代。实验证明,经四轮强化训练后,Llama 7B模型性能大幅提升,在多项任务上超越GPT-4等先进模型,展示了LLM自我优化的巨大潜力。详情参阅论文:https://arxiv.org/abs/2407.19594。
  • 08.20 08:35:54
    发表了文章 2024-08-20 08:35:54

    从炒菜到缝针!斯坦福炒虾团队打造自主AI达芬奇,苦练神指当外科医生

    【8月更文挑战第20天】斯坦福大学的研究团队,昵称“斯坦福炒虾团队”,通过模仿学习开发出一款能自主执行外科手术的AI达芬奇。此项目克服了达芬奇系统运动学不一致性的难题,采用相对动作公式,成功训练AI完成组织操作、针头处理及打结等关键手术步骤。这项成果不仅展现了AI在提升手术精度与效率上的巨大潜力,还可能减少对外科手术新数据的需求,但其临床实用性仍需进一步验证。论文已发布于https://arxiv.org/abs/2407.12998。
  • 08.20 08:35:46
    发表了文章 2024-08-20 08:35:46

    ICML 2024:AI也会刷抖音!清华领衔发布短视频全模态理解新模型

    【8月更文挑战第20天】SALMONN是由清华大学在ICML 2024发表的一种开创性的多模态模型,专为短视频全模态理解设计。它集成了预训练文本大模型与语音、音频编码器,能直接处理多样音频输入,在自动语音识别、翻译、情绪识别等任务中表现出色。SALMONN展现了令人兴奋的新能力,如翻译未训练语言和基于语音的问答。通过少样本激活微调,可进一步发掘其跨模态潜能。尽管如此,模型的计算成本和泛化能力仍是待克服的挑战。SALMONN标志着AI在具备通用听觉理解方面迈出重要一步。[论文链接: https://arxiv.org/abs/2310.13289]
  • 08.19 08:18:54
    发表了文章 2024-08-19 08:18:54

    Science研究揭GenAI双刃剑:GenAI让个人创作出彩却令集体创意趋同

    【8月更文挑战第19天】近期《Science》刊载的研究揭示了GenAI对个人创作与集体创意的双刃剑效应。GenAI能显著增强个人创作力,为艺术家提供新颖灵感,协助设计师优化作品,并通过个性化反馈帮助作家提升技能。然而,它也可能导致集体创意趋同,削弱多样性与创新。为平衡二者,研究建议鼓励创作者独立性、加强跨领域合作并建立多元评价体系。论文详情参见:https://www.science.org/doi/10.1126/sciadv.adn5290。
  • 08.19 08:18:45
    发表了文章 2024-08-19 08:18:45

    Meta开源用于数学等复杂推理AI Agent—HUSKY

    【8月更文挑战第19天】Meta AI团队开源了HUSKY,一种统一的AI代理,专长解决数学及复杂推理任务。HUSKY通过学习在通用操作空间内推理,涵盖数值、表格和基于知识的任务。它分为生成和执行两阶段,利用专家模型如语言和数值推理模型解决问题。经过14个数据集测试,HUSKY展现出超越同类代理的性能,尤其是在新提出的HUSKYQA评估集中,其7B模型的表现媲美甚至超越GPT-4等大型模型。相关代码和模型已公开,以推动领域内的研究进展。[论文](https://arxiv.org/abs/2406.06469)
  • 08.19 08:18:36
    发表了文章 2024-08-19 08:18:36

    ECCV 2024:是真看到了,还是以为自己看到了?多模态大模型对文本预训练知识的过度依赖该解决了

    【8月更文挑战第19天】多模态大模型(MLLMs)能依据视觉输入生成回应,但常过度依赖文本预训练知识,忽略视觉信息,导致回应与图像不符的问题。新论文提出“Bootstrapped Preference Optimization (BPO)”方法,通过引入含偏差的样本进行偏好学习,以减少文本偏倚的影响并提高模型可靠性。实验表明该方法有效改善了模型性能,但在构建偏好数据集方面仍面临挑战。论文链接: https://arxiv.org/pdf/2403.08730
  • 08.18 12:57:59
    发表了文章 2024-08-18 12:57:59

    万亿token!史上最大多模态数据集诞生

    【8月更文挑战第18天】MINT-1T是由Anas Awadalla等创建的迄今最大规模开源多模态数据集,含1万亿文本token及34亿图像,规模为现有数据集10倍。它引入了新数据源如PDF和ArXiv论文,提供多样化训练材料。经验证,使用MINT-1T训练的模型性能优异。尽管存在数据质量等挑战,但通过预处理可克服。论文详情见[链接]。
  • 08.18 12:57:52
    发表了文章 2024-08-18 12:57:52

    反转了?在一场新较量中,号称替代MLP的KAN只赢一局

    【8月更文挑战第18天】近期研究重新评估了KAN(Kolmogorov-Arnold Networks)与MLP(Multi-Layer Perceptrons)在网络性能上的差异。通过对多种任务领域的全面比较,包括机器学习、视觉、音频及NLP等,研究显示MLP在多数场景下性能更佳,仅在符号公式表示上KAN略胜一筹,而这优势源于其B-spline激活函数。有趣的是,KAN在连续学习中表现出更严重的遗忘问题。尽管研究提供了有价值的观点,但也指出了其实验局限性,强调了模型选择时需综合考量的重要性。[论文链接](https://arxiv.org/pdf/2407.16674)
  • 08.18 12:57:44
    发表了文章 2024-08-18 12:57:44

    彻底摒弃人工标注,AutoAlign方法基于大模型让知识图谱对齐全自动化

    【8月更文挑战第18天】知识图谱作为结构化语义库,在AI领域应用广泛,但构建中实体对齐难题一直存在。近期,AutoAlign提供了一种全自动对齐方案,由张锐等人研发并发布于arXiv。此方法摒弃传统的人工标注依赖,利用大型语言模型实现全自动化对齐。AutoAlign包括谓词与实体对齐两部分,通过构建谓词邻近图及计算实体嵌入,有效提升对齐性能。实验显示其性能超越现有方法,尤其适用于大规模数据集。尽管如此,AutoAlign仍面临计算资源消耗及不同领域适应性等挑战,未来需进一步优化以增强鲁棒性和泛化能力。
  • 08.17 06:46:13
    发表了文章 2024-08-17 06:46:13

    算法、系统和应用,三个视角全面读懂混合专家(MoE)

    【8月更文挑战第17天】在AI领域,混合专家(MoE)模型以其独特结构成为推动大型语言模型发展的关键技术。MoE通过动态选择专家网络处理输入,实现条件计算。稀疏型MoE仅激活部分专家以减少计算负担;软MoE则加权合并专家输出提升模型稳定性。系统层面,MoE优化计算、通信与存储,利用并行化策略提高效率。在NLP、CV、推荐系统等领域展现强大应用潜力,但仍面临训练稳定性、可解释性等挑战。[论文链接: https://arxiv.org/pdf/2407.06204]
  • 08.17 06:46:06
    发表了文章 2024-08-17 06:46:06

    全球首篇!调研近400篇文献,鹏城实验室&中大深度解析具身智能

    【8月更文挑战第17天】在人工智能领域,具身智能正成为研究焦点。它强调智能体在现实世界中的感知与交互。近期,鹏城实验室与中山大学联合发布的首篇全球具身智能综述,调研近400篇文献,总结了该领域的理论和技术进展。文章探讨了具身感知、交互及仿真到现实的适应性等关键议题,并指出了面临的挑战如数据质量、模型泛化等,为通向通用人工智能铺路。论文已发表于IEEE会议记录中。
  • 发表了文章 2024-12-20

    NeurIPS 2024:真实世界复杂任务,全新基准GTA助力大模型工具调用能力评测

  • 发表了文章 2024-12-20

    RAG新突破:块状注意力机制实现超低延迟检索增强

  • 发表了文章 2024-12-20

    高效评估多模态预训练对齐质量,中科大提出模态融合率MIR

  • 发表了文章 2024-12-19

    MetaGPT开源SELA,用AI设计AI,效果超越OpenAI使用的AIDE

  • 发表了文章 2024-12-19

    幻觉不一定有害,新框架用AI的幻觉优化图像分割技术

  • 发表了文章 2024-12-19

    LLM 比之前预想的更像人类,竟也能三省吾身

  • 发表了文章 2024-12-18

    NeurIPS 2024:机器人操纵世界模型来了,成功率超过谷歌RT-1 26.6%

  • 发表了文章 2024-12-18

    苹果发布高效双EMA梯度优化方法,适配Transformer、Mamba模型

  • 发表了文章 2024-12-18

    理所当然也能错,数学界震动:上下铺猜想被证伪

  • 发表了文章 2024-12-17

    机器人迈向ChatGPT时刻!清华团队首次发现具身智能Scaling Laws

  • 发表了文章 2024-12-17

    AI自己长出了类似大脑的脑叶?新研究揭示LLM特征的惊人几何结构

  • 发表了文章 2024-12-17

    强化学习之父Richard Sutton给出一个简单思路,大幅增强所有RL算法

  • 发表了文章 2024-12-16

    打破RLHF瓶颈,克服奖励欺骗!Meta发布全新后训练方式CGPO,编程水平直升5%

  • 发表了文章 2024-12-16

    新视角设计下一代时序基础模型,Salesforce推出Moirai-MoE

  • 发表了文章 2024-12-16

    3D大模型助力,15分钟即可训练高质量、个性化的数字人模型,代码已开放

  • 发表了文章 2024-12-13

    国产最强语音大模型诞生,MaskGCT宣布开源,声音效果媲美人类

  • 发表了文章 2024-12-13

    超越YOLOv10/11、RT-DETRv2/3!中科大D-FINE重新定义边界框回归任务

  • 发表了文章 2024-12-13

    导航、采矿、建造,北大这个新智能体把《我的世界》玩透了

  • 发表了文章 2024-12-12

    新扩散模型OmniGen一统图像生成,架构还高度简化、易用

  • 发表了文章 2024-12-12

    大规模、动态语音增强/分离新基准!清华发布移动音源仿真平台SonicSim,含950+小时训练数据

正在加载, 请稍后...
滑动查看更多
  • 回答了问题 2024-12-16

    AI视频技术的发展是否会影响原创内容的价值?

    回想起我刚开始接触视频制作的时候,那是一个需要大量时间和专业知识的过程。从脚本编写、拍摄到后期剪辑,每一个环节都需要精心打磨。然而,随着AI技术的发展,这些繁琐的步骤逐渐被自动化工具所取代。现在,只需输入一段文字或语音,AI就能自动生成一段高质量的视频,这在以前是难以想象的。 这种技术的进步无疑为内容创作带来了巨大的便利。它使得更多的人能够参与到视频制作中来,无论是个人创作者还是企业,都能够以更低的成本和更短的时间制作出令人惊艳的视频内容。然而,这种便利也带来了一些问题。 当AI能够自动生成高质量的视频时,原创内容的独特性是否会受到挑战?在我看来,答案是肯定的。当AI可以轻松地模仿和复制任何风格和类型的内容时,原创作品的独特性将变得越来越难以凸显。观众可能会逐渐失去对原创内容的敏感度,因为他们无法区分哪些是AI生成的,哪些是真正由人类创造的。 个人创造力是否会被稀释?我认为,虽然AI技术可以帮助我们更高效地制作视频,但它并不能取代人类的创造力。真正的原创性作品仍然需要人类的独特视角、情感和经验。AI可以提供工具和辅助,但无法完全替代人类的创造力。 AI技术的发展为内容创作带来了更多的可能。它使得创作者能够更专注于创意和故事本身,而不必被技术细节所困扰。同时,AI技术也为创作者提供了更多的灵感和资源,他们可以利用AI生成的内容作为起点,进一步发挥自己的创造力。 AI视频技术的发展是一把双刃剑。它既为内容创作带来了巨大的便利和可能性,也带来了一些挑战和问题。作为创作者,我们需要学会如何与AI技术共存,如何利用它来提升自己的创作能力,而不是被它所替代。 我相信,真正的原创性和个人创造力是无法被AI所稀释的。因为它们源自于我们内心深处的情感、经验和独特视角。无论技术如何发展,这些都是无法被复制和替代的。所以,当任何人都能用AI轻松生成高质量视频时,我们更应该珍视和保护真正的原创性作品,因为它们是我们作为人类的独特价值所在。
    踩0 评论0
  • 回答了问题 2024-12-16

    日常工作中,开发者应该如何避免“效率陷阱”?

    过于追求短期成果而忽视了代码质量。在项目初期,为了尽快完成功能开发,我可能会选择一些简单的、临时的解决方案,而没有考虑到这些方案可能带来的长期维护成本。这种做法虽然在短期内提高了开发效率,但随着项目的推进,代码变得越来越难以理解和维护,最终反而降低了整体的开发效率。为了解决这个问题,我开始注重代码的可读性和可维护性,尽量使用清晰的命名、简洁的逻辑和良好的注释,同时也会定期进行代码审查和重构,确保代码的质量和可维护性。 缺乏长远规划。在项目开发过程中,我可能会过于关注当前的需求和任务,而没有考虑到未来可能的变化和扩展。这种做法虽然在短期内提高了开发效率,但随着项目需求的变化,我可能会发现之前的架构和设计无法满足新的需求,需要进行大规模的修改和重构,这不仅浪费了时间和资源,也降低了开发效率。为了解决这个问题,我开始注重项目的长远规划,在项目初期就与团队成员一起讨论和确定项目的架构和设计,同时也会定期进行需求分析和评估,确保项目的设计和实现能够满足未来的需求。 过度工作。在项目开发过程中,为了尽快完成任务,我可能会选择加班或牺牲休息时间来工作。这种做法虽然在短期内提高了开发效率,但长期来看,过度工作会导致我的身体和心理健康出现问题,最终反而降低了开发效率。为了解决这个问题,我开始注重工作与生活的平衡,尽量避免加班和过度工作,同时也会定期进行身体锻炼和放松活动,确保自己的身心健康。 除了以上提到的“效率陷阱”,我还遇到过其他一些问题,如缺乏有效的沟通和协作、技术债务的积累等。为了解决这些问题,我开始注重团队合作和沟通,尽量与团队成员保持良好的沟通和协作,同时也会定期进行技术债务的评估和清理,确保项目的健康和可持续发展。
    踩0 评论0
  • 回答了问题 2024-12-16

    AI 编码助手能否引领编程革命?一起探索 AI 对研发流程的变革

    AI编码可以帮助工程师解放许多重复性和低价值的任务。在传统的编码过程中,工程师需要花费大量时间编写代码、调试错误和进行单元测试。然而,通义灵码可以根据海量优秀开源代码数据训练,快速生成行级或函数级代码、单元测试和优化建议,从而减轻工程师的负担。这意味着工程师可以有更多的时间专注于解决复杂的问题、设计创新的解决方案和提高代码质量。 AI编码还可以提高研发团队的协作效率。在传统的研发流程中,团队成员需要通过会议、文档和代码审查等方式进行沟通和协作。然而,通义灵码可以与云效等DevOps工具链集成,提供完整的任务管理、代码托管和CI/CD流程,从而实现更高效的项目开发和管理。团队成员可以实时查看代码变更、测试结果和部署状态,及时发现和解决问题,从而提高软件交付的质量和速度。 AI编码还可以降低运维复杂性并提高成本效益。在传统的应用部署和扩展过程中,工程师需要手动配置服务器、调整资源和监控性能。然而,通义灵码可以与函数计算FC等云服务集成,实现自动扩展和按需计费,从而实现灵活的资源管理和快速的应用发布。工程师可以根据实际需求自动调整资源,避免资源浪费和性能瓶颈,从而降低运维成本并提高应用的可用性和可扩展性。 从需求分析、设计、编码、测试到部署,AI编码可能会对整个研发流程产生深远的影响。在需求分析阶段,AI可以帮助工程师理解和分析用户需求,生成需求文档和用例模型,从而提高需求的准确性和完整性。在设计阶段,AI可以帮助工程师进行系统架构设计、模块划分和接口定义,从而提高设计的合理性和可扩展性。在编码阶段,AI可以帮助工程师编写代码、进行代码审查和优化,从而提高代码的质量和效率。在测试阶段,AI可以帮助工程师生成测试用例、执行测试和分析测试结果,从而提高测试的覆盖率和准确性。在部署阶段,AI可以帮助工程师进行应用打包、配置管理和自动化部署,从而提高部署的效率和可靠性。 然而,AI编码也面临一些挑战和限制。首先,AI编码需要大量的数据和计算资源进行训练和推理,这可能会增加研发团队的成本和复杂性。其次,AI编码可能无法完全理解和解决复杂的业务逻辑和需求,需要工程师进行干预和调整。最后,AI编码可能引发一些伦理和社会问题,如代码的可解释性、安全性和隐私保护等。
    踩0 评论0
  • 回答了问题 2024-12-11

    AI新茶饮,是噱头还是未来?

    随着AI技术的快速发展,新茶饮行业开始积极探索智能化转型。从智能出茶机到AI互动营销,AI技术正在改变新茶饮的方方面面。例如,喜茶的智能出茶机可以在10秒钟内完成一杯茶饮的制作,而蜜雪冰城则成立了一家专注于人工智能的子公司。这些创新不仅提高了生产效率,还为消费者带来了全新的体验。 “AI把脉喝茶”是新茶饮行业中最具创新性的AI应用之一。通过AI图像识别技术,系统可以分析消费者的舌象和面象,并根据这些信息推荐合适的茶饮配方。这种个性化的饮品选择不仅满足了消费者对健康和养生的需求,还为他们提供了一种全新的互动体验。 除了个性化的饮品选择,AI技术还被广泛应用于新茶饮的制作流程中。智能出茶机、自动去皮机、智能蒸煮机等设备可以自动完成原料的制备、管理、调饮制茶等环节,大幅提升了产品制作的能力。这些设备不仅提高了生产效率,还确保了产品的一致性和质量。 AI技术还为新茶饮品牌提供了全新的营销方式。例如,茶百道和益禾堂利用超写实虚拟偶像和AR技术,推出了“AI虚拟偶像”推荐茶饮的活动,增加了消费者的互动体验。这种创新的营销方式不仅吸引了消费者的注意力,还为品牌带来了更多的曝光和销售机会。 尽管AI技术为新茶饮行业带来了许多机遇,但也存在一些挑战。首先,智能化设备的研发和维护需要大量的资金投入,这对于中小茶饮品牌来说可能是一个负担。其次,AI技术的应用仍处于探索阶段,其效果和稳定性还有待验证。最后,过度依赖AI技术可能会导致品牌失去独特的个性和灵魂。 然而,我认为AI新茶饮是未来饮品市场的必然发展方向。随着AI技术的不断进步和成本的降低,越来越多的茶饮品牌将采用智能化设备和系统。这将进一步提高生产效率、降低成本,并为消费者带来更好的体验。同时,AI技术还可以帮助品牌更好地了解消费者需求,从而提供更个性化的产品和服务。 作为一名开发者,我对AI新茶饮充满了兴趣,并尝试了一些AI茶饮产品。我发现,这些产品不仅在口味上有所创新,还为我提供了一种全新的互动体验。我认为,AI新茶饮不仅仅是一个噱头,而是未来饮品市场的趋势。它将为消费者带来更多的选择和便利,同时也为茶饮品牌提供了新的增长机会。
    踩0 评论0
  • 回答了问题 2024-12-11

    开发者们需要如何打造属于自己的Plan B?

    1.了解市场需求和技术趋势是打造Plan B的基础。我们需要时刻关注行业动态,了解最新的技术发展和市场需求变化。这可以通过阅读技术博客、参加行业会议、与同行交流等方式实现。只有了解了市场和趋势,我们才能更好地预测未来的变化,并据此制定相应的备用方案。 2.培养多元化的技能和知识体系是打造Plan B的关键。作为开发者,我们不能仅仅局限于某一项技术或领域,而应该积极学习和掌握多种技能。这样,即使某个领域的需求发生变化,我们也能迅速调整自己的方向,找到新的机遇。同时,多元化的技能和知识体系也能为我们提供更多的创新空间,让我们能够从不同的角度思考问题,提出更具有创新性的解决方案。 3.建立良好的人际关系和合作网络是打造Plan B的重要保障。在开发过程中,我们经常需要与其他开发者、设计师、产品经理等人员合作。因此,建立良好的人际关系和合作网络,可以为我们提供更多的资源和支持。当我们面临困难或挑战时,这些关系和网络可以为我们提供帮助和指导,让我们能够更快地找到解决问题的方法。 4.制定详细的项目计划和风险管理策略是打造Plan B的必备步骤。在开发项目之前,我们应该制定详细的项目计划,包括时间表、里程碑、任务分配等。同时,我们还应该制定风险管理策略,包括风险识别、风险评估、风险应对等。这样,即使项目过程中出现问题或变化,我们也能迅速调整计划,采取相应的措施,确保项目能够顺利进行。 5.保持积极的心态和持续的学习是打造Plan B的动力源泉。作为开发者,我们应该保持积极的心态,勇于面对挑战和变化。同时,我们还应该持续学习,不断提升自己的技能和知识水平。只有这样,我们才能更好地应对未来的不确定性,打造出一个真正适合自己的Plan B。
    踩0 评论0
  • 回答了问题 2024-12-03

    AI音色克隆挑战播客,它能模拟人的特质吗?

    让我们来看看音色克隆技术在播客领域的应用。通过这项技术,播客创作者可以轻松地复制自己或他人的声音,从而实现更多样化的内容创作。例如,他们可以创建虚拟角色,为这些角色赋予独特的声音,从而增强故事的沉浸感。此外,音色克隆技术还可以用于多语言内容的创作,通过复制母语者的声音,为非母语者提供更自然的听力体验。 然而,音色克隆技术也带来了一些潜在的问题。首先,它可能对原创性产生影响。如果任何人都可以轻松地复制他人的声音,那么原创内容的价值可能会受到质疑。这可能会导致创作者失去动力,因为他们的作品可能被轻易地复制和传播。 其次,音色克隆技术也引发了隐私保护的问题。如果个人的声音特征可以被轻易地捕捉和复制,那么他们的隐私可能会受到侵犯。例如,如果一个人的声音被复制并用于欺诈或其他非法目的,那么他们可能会遭受损失。 最后,音色克隆技术还可能对声音身份认同产生影响。如果个人的声音特征可以被轻易地复制和改变,那么他们可能会失去对自己声音的认同感。这可能会对他们的自我形象和自尊心产生负面影响。 至于音色克隆技术是否会引发与播客领域的流量竞争,我认为这取决于如何使用这项技术。如果创作者使用音色克隆技术来创造独特而有价值的内容,那么它可能会吸引更多的听众,从而增加流量。然而,如果创作者滥用这项技术,复制他人的内容或侵犯他人的隐私,那么它可能会引发负面的竞争,并损害整个播客生态系统的健康。
    踩0 评论0
  • 回答了问题 2024-12-03

    动机VS自律,对开发者们来说哪个比较重要?

    我个人认为,动机和自律在开发者的成长和项目成功中都扮演着不可或缺的角色。它们并不是相互排斥的,而是相辅相成的。 作为开发者,我们对技术有着浓厚的兴趣和热情。这种内在的动机驱使我们不断学习新的编程语言、框架和工具。我们渴望解决复杂的问题,并享受在解决问题的过程中所获得的成就感。这种动机不仅让我们保持对工作的热情,还促使我们不断突破自己的技术边界。 我记得在我刚开始从事开发工作的时候,我对学习新技术充满了好奇心和渴望。我会花费大量的时间阅读技术博客、参加在线课程和参与开源项目。这种强烈的动机让我在短时间内取得了显著的进步,并让我在团队中脱颖而出。 然而,仅仅依靠动机是不够的。在实际的项目开发中,我们经常会面临时间压力、需求变更和技术挑战。这时候,自律就显得尤为重要。 自律意味着我们能够制定合理的计划并严格执行。它要求我们在面对困难和挫折时保持冷静和专注。良好的自律习惯可以帮助我们更好地管理时间、提高工作效率,并确保代码的质量和可维护性。 我曾经参与过一个大型的项目,时间非常紧迫,需求也经常发生变化。在这样的情况下,我意识到仅仅依靠动机是不够的。我开始制定详细的计划,并严格按照计划执行。我学会了如何优先处理重要的任务,如何合理安排时间,以及如何在压力下保持专注。这些自律的习惯让我能够按时完成任务,并确保代码的质量和可维护性。 因此,我认为动机和自律在开发者的成长和项目成功中都是不可或缺的。动机为我们提供了前进的动力和方向,而自律则帮助我们将动机转化为实际的行动和成果。 当然,每个人的情况都是不同的。有些人可能更倾向于依靠动机来驱动自己,而另一些人则更注重自律。这并没有对错之分,关键是要找到适合自己的平衡点。
    踩0 评论0
  • 回答了问题 2024-11-27

    AI生成海报or人工手绘,哪个更戳你?

    AI生成的海报,以其高效、创新和个性化的特点,让我深感惊叹。以PAI-ArtLab为代表的AI设计平台,能够迅速根据用户需求生成符合企业特定风格的Logo商标图、设计图、宣传图、海报图等。这种自动化、智能化的设计方式,不仅大大节省了人力和时间成本,还保证了图片生成的质量,提高了图片产出的效率。AI通过对大量数据的分析和学习,能够捕捉到用户偏好的细微差别,从而生成既符合企业品牌形象,又能吸引目标受众注意的海报。此外,AI还能根据市场趋势和消费者心理的变化,实时调整设计策略,确保海报的时效性和吸引力。 然而,尽管AI生成的海报具有诸多优势,但我仍然被人工手绘作品的独特魅力所吸引。人工手绘作品,是艺术家通过画笔、颜料等媒介,将个人情感、审美观念和创作理念融入其中的结果。每一幅手绘作品都承载着艺术家的独特情感和思考,是艺术家与观众之间情感交流的桥梁。手绘作品在细节处理、色彩运用和构图布局等方面,往往具有更加细腻和丰富的表现力。艺术家通过巧妙的笔触和色彩搭配,能够营造出独特的视觉氛围和情感体验,使观众在欣赏作品的过程中产生共鸣。 在我个人的审美偏好和情感需求中,我更倾向于人工手绘作品来捕捉生活中的美好瞬间。手绘作品的原创性和艺术性让我着迷,每一幅作品都是艺术家独一无二的创作,无法被复制或替代。这种独特性使得手绘作品在艺术市场中具有极高的收藏价值和艺术价值。当我欣赏一幅手绘作品时,我能够感受到艺术家的情感和思考,这种情感交流让我获得更加深刻的情感体验。 然而,我并不排斥AI生成的海报。在商业领域和一些特定场景下,AI生成的海报能够迅速满足设计需求,同时保证图片的质量和吸引力。它的效率和创新性为我们的生活带来了便利和惊喜。我相信,随着AI技术的不断发展和进步,它将为艺术创作带来更多的可能性和机遇。
    踩0 评论0
  • 回答了问题 2024-11-26

    “AI +脱口秀”,笑点能靠算法去创造吗?

    为了探索这个问题,我开始尝试使用AI生成幽默段子。我利用了各种大模型,包括基于弱智吧语料训练的模型和阿里的鸟鸟分鸟模型。这些模型都声称能够生成具有幽默感的文本。 首先,我尝试了基于弱智吧语料训练的模型。弱智吧是一个以幽默和无厘头著称的贴吧,其中的段子往往具有强烈的逻辑性和语言陷阱。我向模型输入了一些经典的弱智吧问题,比如“一个半小时是几个半小时?”和“被门夹过的核桃,还能补脑吗?”。模型的回答虽然有时候能够理解问题的意思,但往往缺乏真正的幽默感。它的回答更像是对问题的直接解释,而不是一个有趣的笑话。 接下来,我尝试了阿里的鸟鸟分鸟模型。这个模型是基于脱口秀演员鸟鸟的文本风格和语速训练的。我与鸟鸟分鸟进行了一个小时的对话,发现它确实能够生成一些有趣的段子。比如,当我问它“雷公和电母用的是直流电还是交流电?”时,它回答道:“这个问题有点难,我得去问问他们本人。”这个回答虽然不是特别好笑,但至少比弱智吧模型的回答更有幽默感。 然而,尽管鸟鸟分鸟模型在生成幽默段子方面取得了一些进展,但我仍然觉得它的幽默感与真人创作相比还有很大差距。真人创作的幽默段子往往具有更丰富的情感和更深刻的洞察力,而AI生成的段子则显得有些生硬和机械。 那么,为什么AI在生成幽默段子方面还存在这样的挑战呢?我认为有几个原因: 1.幽默的主观性:幽默是一种非常主观的体验,每个人对幽默的理解和喜好都不同。这使得AI很难预测和满足所有人的幽默需求。 2.幽默的复杂性:幽默往往涉及复杂的语言技巧、文化背景和社会经验。AI虽然可以学习这些知识,但很难真正理解和运用它们来创造幽默。 3.幽默的创造力:幽默需要创造力和想象力,而这些正是AI目前所缺乏的。AI可以模仿和生成已知的幽默模式,但很难创造出全新的、令人惊喜的幽默。 尽管存在这些挑战,我仍然对AI在幽默领域的应用充满希望。随着技术的发展和数据的积累,AI可能会逐渐学会理解和创造幽默。同时,AI也可以作为人类创作者的辅助工具,帮助他们生成新的灵感和想法。
    踩0 评论0
  • 回答了问题 2024-11-19

    AI宠物更适合当代年轻人的陪伴需求吗?

    在当今社会,年轻人面临着前所未有的工作压力和社交挑战。他们往往需要在繁忙的工作中找到平衡,同时还要应对社交媒体和人际关系带来的各种压力。在这样的背景下,寻找一种既能提供情感支持又不需要太多照料时间的陪伴方式,成为了他们的新需求。 AI宠物正是在这样的背景下应运而生。它通过生成对抗网络(GAN)等技术,创作出逼真的宠物照片和虚拟场景,为宠物爱好者提供新的娱乐方式。与传统的宠物不同,AI宠物无需实际喂养、遛弯,也不需要学习喂养知识,更没有生病、死亡的风险。它能够24小时在线互动,随时陪伴在主人身边。 对于那些工作繁忙、没有时间照顾宠物的年轻人来说,AI宠物的吸引力是显而易见的。它不仅可以提供情感支持,缓解孤独感,还可以在主人需要的时候提供互动和娱乐。此外,AI宠物还可以根据主人的喜好和需求进行个性化定制,满足不同人的需求。 然而,AI宠物也存在一些局限性。首先,它无法提供真实的触感和温度,无法像真实宠物那样与主人建立深厚的情感联系。其次,AI宠物的互动方式相对单一,缺乏真实宠物的多样性和不可预测性。最后,AI宠物的长期陪伴效果还有待观察,它是否能够持续不断地给用户带来新鲜感和满足感,仍然是一个未知数。 作为一名开发者,我对AI宠物的技术原理和应用前景非常感兴趣。然而,如果让我选择是否要“养”一只AI宠物,我可能会持保留态度。虽然AI宠物可以提供一定的情感支持和娱乐,但我更倾向于与真实宠物建立深厚的情感联系。真实宠物的陪伴和互动方式更加丰富多样,它们能够给我带来更多的惊喜和满足感。 尽管如此,我仍然看好AI宠物的未来发展。随着技术的不断进步和市场需求的增长,AI宠物有望在未来的宠物市场中扮演更加重要的角色。它可能会与真实宠物形成互补关系,为那些无法或不愿意养真实宠物的人提供一种新的选择。同时,AI宠物还有望在教育、医疗等领域发挥重要作用,为人们的生活带来更多的便利和乐趣。
    踩0 评论0
  • 回答了问题 2024-11-19

    AI客服未来会完全代替人工吗?

    AI客服不会完全取代人工客服,而是与人工客服形成一种互补和协作的关系。 一、与AI客服的“沟通”经历 记得有一次,我在某电商平台上购买了一件商品,但收到货后发现有质量问题。我尝试通过平台的客服系统解决问题,但首先迎接我的是AI客服。它热情地询问我有什么需要帮助的,但当我描述完问题后,它却给出了几个与我的问题并不相关的解决方案。我反复尝试用不同的方式描述问题,但AI客服似乎无法理解我的需求。 在多次无果的尝试后,我终于找到了转接人工客服的选项。然而,这个过程也并不顺利。我需要在聊天窗口中输入“转人工”多次,才终于成功连接到人工客服。虽然最终问题得到了解决,但整个过程让我感到非常沮丧和浪费时间。 还有一次,我在使用一款手机应用时遇到了技术问题。我尝试通过应用内置的客服系统寻求帮助,但同样首先迎接我的是AI客服。它提供了一些常见的故障排除步骤,但这些步骤并没有解决我的问题。我尝试要求转接人工客服,但系统却告诉我人工客服繁忙,请稍后再试。 这些经历让我意识到,虽然AI客服在处理简单、重复的问题时可能非常高效,但在面对复杂或个性化的问题时,它仍然存在很大的局限性。 二、AI客服的未来展望 我对AI客服未来发展的几点展望: 1.更准确的语义理解:随着自然语言处理(NLP)技术的进步,AI客服将能够更准确地理解用户的意图和需求。这将减少AI客服给出错误或不相关答案的情况,提高用户的满意度。 2.更丰富的知识库:通过不断学习和积累数据,AI客服的知识库将变得越来越丰富。这将使AI客服能够处理更多类型的问题,并提供更准确和有用的答案。 3.更个性化的服务:通过分析用户的历史数据和行为模式,AI客服将能够提供更个性化的服务。例如,它可以根据用户的购买记录推荐相关的产品或服务,或者根据用户的反馈调整回答的风格和语气。 4.更无缝的转接:在未来,AI客服和人工客服之间的转接将变得更加无缝和高效。当AI客服无法解决用户的问题时,它将能够自动将用户转接到最合适的人工客服,而无需用户进行额外的操作。 然而,尽管AI客服在未来可能会得到显著的改进,我仍然认为它不会完全取代人工客服。以下是我认为人工客服在未来仍然不可或缺的几个原因: 1.情感理解和同理心:人类客服能够理解和回应用户的情感需求,提供温暖和个性化的支持。这在处理复杂或敏感的问题时尤为重要,而目前的AI客服还无法完全复制这种能力。 2.创造性思维和问题解决能力:人类客服能够运用创造性思维和问题解决能力,处理非常规或复杂的问题。他们能够根据具体情况灵活调整策略,而AI客服在这方面还存在一定的局限性。 3.道德和隐私问题:在处理涉及道德或隐私的问题时,用户可能更信任人类客服而非机器。人类客服能够遵守职业道德和保密义务,而AI客服在这方面还缺乏明确的规范和监管。 4.建立关系和信任:人类客服能够与用户建立长期的关系和信任,这对于提供优质的客户服务至关重要。而AI客服在这方面还无法完全取代人类的角色。
    踩0 评论0
  • 回答了问题 2024-11-13

    “云+AI”能够孵化出多少可能?

    一、云计算的未来方向 在我看来,云计算将朝着更加智能化、边缘化和安全化的方向进化。 1.智能化:随着AI技术的不断成熟,云计算将更加注重智能化服务。通过整合AI和ML技术,云服务将能够提供更智能的数据分析、预测和自动化决策支持,帮助企业和个人更好地应对复杂多变的环境。 2.边缘化:边缘计算的兴起将使云计算更加接近数据源,提供低延迟、高带宽的计算服务。这对于需要实时数据处理的应用场景尤为重要,如自动驾驶、智能制造和物联网等。 3.安全化:随着数据泄露和网络攻击事件的频发,云计算的安全问题日益突出。未来,云服务商将更加注重数据保护和隐私安全,采用先进的加密技术和区块链等去中心化验证机制,确保用户数据的安全性和完整性。 二、大模型和AI应用:云服务商的第二增长曲线 大模型和AI应用有望成为云服务商的第二增长曲线。随着AI技术的快速发展,越来越多的企业和个人开始意识到AI的潜力,并积极寻求将其应用于实际业务中。云服务商通过提供强大的算力支持、丰富的AI模型和便捷的开发工具,能够帮助用户快速构建和部署AI应用,从而实现业务的智能化转型。 以阿里云为例,其在云栖大会上展示了丰富的AI应用场景,包括自动驾驶、机器人和智能客服等。通过与大模型创业公司的合作,阿里云不仅能够提供更多样化的AI服务,还能够吸引更多的企业客户,进一步扩大其市场份额。 三、“云+AI”的创新成果与应用前景 “云+AI”的强强联合能够孵化出无数令人瞩目的创新成果与应用前景。以下是几个我认为最具潜力的领域: 1.智慧城市:通过整合云计算和AI技术,智慧城市能够实现对城市资源的精细化管理和优化配置。例如,利用AI算法分析交通流量数据,可以实现智能交通信号控制,减少拥堵和排放;通过云平台整合各类城市服务,可以为市民提供更加便捷、高效的生活体验。 2.个性化医疗:AI技术在医疗领域的应用将为个性化医疗带来革命性的变化。通过分析海量的医疗数据,AI可以帮助医生更准确地诊断疾病、制定治疗方案,并预测患者的康复情况。同时,云计算的强大算力支持将使这些分析过程更加高效、可靠。 3.企业智能化转型:对于传统企业而言,“云+AI”的结合将为其智能化转型提供强大的动力。通过引入AI技术,企业可以实现生产流程的自动化、供应链的智能化管理以及客户服务的个性化定制,从而提高效率、降低成本,并增强市场竞争力。 4.教育领域的个性化学习:AI技术在教育领域的应用将使个性化学习成为可能。通过分析学生的学习数据和行为模式,AI可以为每个学生提供量身定制的学习计划和资源推荐,帮助他们更好地掌握知识、提高成绩。同时,云计算的弹性扩展能力将使这些个性化服务更加经济、可行。
    踩0 评论0
  • 回答了问题 2024-11-13

    当AI频繁生成虚假信息,我们还能轻信大模型吗?

    一、敏捷治理 敏捷治理的核心在于灵敏感知、高效协作和快捷响应。具体到大模型的虚假信息治理,我们可以采取以下措施: 1.建立虚假信息等级评估制度:通过评估虚假信息的严重程度,我们可以优先处理高等级虚假信息,如涉及国家安全、社会稳定的内容。同时,对于低等级虚假信息,可以按照常规流程进行处理。 2.构建政府主导的协作机制:政府应发挥主导作用,协调技术开发者、服务提供者、社会组织等多方力量,共同应对虚假信息。通过技术支撑打破“协同迟缓”,以风险沟通填补“协同真空”,以信息共享化解“协同僵化”。 3.实施全链条式治理策略:在虚假信息的生成、传播和消退的各个阶段,采取不同的处置主体和处置手段。例如,在信息生成阶段,通过治理主体的积极干预,提前嵌入信息感知与检测模型;在信息传播阶段,通过附加标注、暂停服务等措施降低传播可能性;在信息消退阶段,运用算法进行反制,精准推送辟谣信息。 二、提升大模型的抗虚假信息干扰能力 实验结果表明,大模型在面对多次重复的虚假信息时,受影响的比重明显增加。同时,运用修辞的劝说性虚假信息比重复性虚假信息更能影响大模型。基于这些发现,我们可以采取以下措施提升大模型的鲁棒性: 1.添加提示模块:为大模型添加一个提示模块,在检测到虚假信息后,使用系统提示语对大模型进行提醒,并在回答之前从自己的参数化知识中检索相关信息。这有助于大模型在面对虚假信息时保持警惕,并提供更准确的回答。 2.优化训练数据:在训练大模型时,应确保数据的真实性和多样性。避免使用包含虚假信息的数据集,并定期更新数据集以反映最新的知识和事实。 3.引入认知科学和心理学的研究:通过结合认知科学和心理学的研究,我们可以更好地理解大模型的行为模式,并探索如何利用先进的大语言模型达成之前做不到的事情。例如,我们可以研究如何利用大模型的逻辑推理能力来识别和反驳虚假信息。 三、开发者的责任与行动 在使用大模型时,我们应采取积极措施避免虚假信息的生成和使用。这包括: 1.严格审核数据来源:在使用外部数据源时,应严格审核其真实性和可靠性。避免使用来源不明或存在争议的数据。 2.定期评估模型性能:定期评估大模型在面对虚假信息时的表现,并根据评估结果进行优化和调整。 3.加强用户教育:向用户提供关于大模型局限性和潜在风险的教育,帮助他们正确理解和使用大模型的输出内容。 4.积极参与治理机制:积极参与政府主导的协作机制,与其他利益相关者共同应对虚假信息挑战。
    踩0 评论0
  • 回答了问题 2024-11-11

    FFA 2024 大会门票免费送!AI时代下大数据技术未来路在何方?

    我想到现场 一、AI时代下大数据技术未来路在何方? 在我看来,AI与大数据的结合将是未来技术发展的主要趋势。大数据为AI提供了丰富的数据资源,而AI则通过算法和模型对这些数据进行深度挖掘和分析,从而提取出有价值的信息和知识。这种结合将推动各行各业的创新和变革。 1.智能化应用的普及 随着AI技术的不断发展,智能化应用将越来越普及。这些应用将能够自动处理和分析大量的数据,并根据分析结果做出决策。例如,在医疗领域,AI可以通过分析患者的病历数据和影像数据,辅助医生进行疾病诊断和治疗方案的制定。 2.实时数据处理的需求增加 随着物联网和5G技术的发展,实时数据处理的需求将越来越大。例如,在智能交通领域,需要实时处理大量的交通数据,以优化交通信号灯的控制,减少交通拥堵。Flink作为一款实时数据处理框架,将在这个领域发挥重要作用。 3.数据安全和隐私保护的重要性增加 随着数据量的增加和数据类型的多样化,数据安全和隐私保护的重要性将越来越高。需要采取严格的安全措施来保护数据,防止数据泄露和滥用。同时,也需要制定相关的法律法规来规范数据的收集、存储和使用。 二、对Apache Flink未来的期望与想法 1.增强实时数据处理能力 随着实时数据处理需求的增加,Flink需要不断增强其实时数据处理能力。例如,可以优化其流式计算引擎,提高数据处理的吞吐量和延迟。 2.支持更多的数据源和数据格式 Flink需要支持更多的数据源和数据格式,以满足不同场景下的数据处理需求。例如,可以支持更多的数据库和消息队列,以及更多的数据格式如JSON、XML等。 3.提供更多的高级功能 Flink可以提供更多的高级功能,如机器学习、图计算等,以满足用户的复杂数据处理需求。例如,可以集成一些常用的机器学习算法,如分类、回归等。 4.加强与AI技术的结合 Flink可以加强与AI技术的结合,例如,可以与一些常用的AI框架如TensorFlow、PyTorch等进行集成,提供端到端的AI解决方案。 三、最感兴趣的专场及原因 在本次大会上,我最感兴趣的专场是“流式湖仓”。这个专场主要讨论了Flink与Paimon的集成,以及如何构建一个高效的数据湖仓系统。我对这个专场感兴趣的原因有以下几点: 1.数据湖仓是未来数据架构的趋势 数据湖仓结合了数据湖和数据仓库的优点,能够提供灵活的数据存储和高效的数据查询能力。随着数据量的增加和数据类型的多样化,数据湖仓将成为未来数据架构的主要趋势。 2.Flink与Paimon的集成具有重要意义 Flink与Paimon的集成将能够提供一个强大的实时数据处理和分析平台。通过这个平台,用户可以实时地从各种数据源获取数据,并进行复杂的数据处理和分析。 3.实际案例的分享 这个专场还分享了一些实际的应用案例,如淘天集团、抖音集团等基于Flink+Paimon架构的实际案例。这些案例展示了Flink+Paimon架构在实际应用中的潜力和价值。 四、与Flink的故事及感受 我和我的团队在日常工作中经常使用Flink进行实时数据处理。我们使用Flink构建了一个实时数据分析平台,用于分析用户行为数据、日志数据等。在使用Flink的过程中,我最大的感受是Flink的灵活性和可扩展性。 1.灵活性 Flink提供了丰富的API和算子,可以满足各种复杂的数据处理需求。例如,我们可以使用Flink的窗口算子进行时间窗口聚合,使用连接算子进行流式连接等。 2.可扩展性 Flink是一个分布式系统,可以轻松地进行水平扩展。当数据量增加时,我们可以增加更多的计算节点来提高系统的吞吐量和延迟。 3.社区支持 Flink有一个活跃的社区,提供了丰富的文档和示例代码。当我们遇到问题时,可以很容易地找到解决方案。
    踩0 评论0
  • 回答了问题 2024-11-05

    AI时代,存力or算力哪一个更关键?

    存力与算力作为支撑AI发展的两大关键要素,它们之间并不是非此即彼的关系,而是相辅相成、协同发展的关系。只有当存力与算力达到平衡与统一时,AI技术才能真正释放出其巨大的潜力。 算力,即计算能力,是数字时代的核心驱动力之一。随着人工智能、大数据等技术的不断进步,算力的需求呈现出爆炸式增长。无论是云端的大规模数据处理,还是边缘设备的实时计算,算力的提升都使得我们能够更快地处理数据、更准确地模拟复杂现象。 在AI大火之际,科技巨头们纷纷投身于一场激烈的GPU争夺战中。GPU作为目前应用最广泛的算力芯片,其强大的并行计算能力使其成为AI模型训练的首选。为了缩短训练时间,通常采用分布式训练技术,通过多台节点构建出一个计算能力和显存能力超大的集群。从谷歌的AI超级计算机A3到META的庞大GPU集群,再到国内的腾讯、字节跳动等公司,都在积极布局万卡集群建设,以期获得更多的算力。 然而,当拥有如此众多的算力芯片时,它们是否已充分发挥出最大潜力呢?答案似乎是否定的。因为算力的释放并非仅仅关乎GPU等算力芯片,而是需要全面考虑数据存储、处理速度、网络传输等多个环节的协同作用。 存力,即数据存储能力,是提供海量数据安全、可靠存储空间的关键。大数据、云存储、区块链等技术的发展,使得数据的存储和管理变得更加高效。同时,随着数据价值的不断提升,存力的重要性也日益凸显。强大的存力不仅可以保证数据的安全性和可靠性,还能够为数据分析和挖掘提供坚实的基础。 在一个全新的视角下,数据与其背后的“存力”,正在成为影响大模型创新整体过程的关键因素。存力给算力带来的助力主要有以下几点: 1.高效的存储能力直接促进了数据处理速度的飞跃。随着大模型训练过程中数据量的爆炸性增长,快速、稳定的数据读取与写入成为提升模型训练效率的关键。存力通过优化存储架构、采用高性能存储介质以及智能数据管理技术,实现了数据访问的低延迟与高并发,极大地缩短了数据处理周期。 2.存力增强了数据的安全性与可靠性。在大数据时代,数据泄露与丢失的风险日益增加,而强大的存力体系通过加密存储、多副本冗余、容灾备份等机制,确保了数据的完整性和安全性。 3.存力还促进了数据的高效共享与协同。在大模型研发过程中,跨团队、跨领域的数据合作日益频繁,高效的存力系统能够支持数据的快速传输与无缝对接,打破信息孤岛,促进知识融合与创新。 4.存力的发展还推动了智能化存储解决方案的诞生,为大模型提供了更加灵活、智能的数据支撑。借助AI算法与机器学习技术,智能存储系统能够自动识别数据特征、优化存储布局、预测并满足数据访问需求,从而进一步提升数据处理的智能化水平。 在人工智能的蓬勃发展进程中,仅仅拥有强大的GPU还远远不够。毕竟数据在处理之前,需要先“搬过来”。有数据显示,一个规模达20亿的数据集,拷贝准备大约整整30天。这就意味着倘若没有出色的存储系统作为支撑,GPU也“巧妇难为无米之炊”。再者,在后续的加密存储以及数据共享等方面,存力皆为算力带来诸多强大助力。 如果用建造高楼大厦举例子,算力便是高耸入云的建筑主体,而存力则是坚实的地基,只有地基稳固,大厦才能拔地而起。因此,倪光南院士也曾表示,算力中心的计算能力由存力、算力、运力三个因素决定。用广义算力去定义一个算力中心,才更准确。 眼下算力中心兴起的同时,还要建设先进的存力中心。数与算、存与算存在失衡现象,也导致了数据割裂在不同数据中心中,数据归集难、融合汇聚难、有效治理难、使用加工难、共享流通难,导致算力和应用缺乏有效的高质量数据供给,算力的潜能被抑制,对算力和产业的赋能价值没有充分发挥,数据中心的商业和产业持续正向闭环存在巨大挑战。 基于此,华为、阿里巴巴、腾讯等公司都在积极建设大规模的存力中心。通过采用先进的存储技术和架构,如分布式存储、软件定义存储等,为客户提供高可用、高可靠、高扩展性的存储服务。同时,还在不断探索新的存储技术和应用场景,如边缘存储、云原生存储等,以满足不同客户的需求。
    踩0 评论0
  • 回答了问题 2024-10-31

    全网寻找 #六边形战士# 程序员,你的 AI 编码助手身份标签是什么?

    在实际使用过程中,通义灵码展现出了令人惊叹的问答能力。它能够准确地捕捉提问的核心内容,并给出相应的答案。更令人印象深刻的是,在处理多轮对话时,通义灵码能够智能地关联上下文,连续理解多个问题并提供连贯的答案。这对于我们这些经常需要在编程过程中进行复杂思考和决策的开发者来说,无疑是一个巨大的帮助。 通义灵码的操作按键与日常的开发体验一致,没有任何学习成本。在编写代码过程中,它会自动出现浅灰色提示,如果需要补全,按下Tab键即可。如果不需要补全,继续编写,提示也会智能更新,不影响编程,非常流畅。这种无缝的集成体验让我在使用过程中感到非常舒适和自然。
    踩0 评论0
  • 回答了问题 2024-10-29

    关于开发者的100件小事,你知道哪些?

    1. 技术与业务的平衡 开发者常常需要在技术与业务之间找到平衡。我们追求技术的完美,但同时也要考虑业务的需求和限制。我记得有一次,我们团队开发一个新功能,我提出了一个非常优雅的解决方案,但需要更多的开发时间。然而,项目经理告诉我,客户希望尽快看到成果,所以我们不得不采用一个更简单的方案。虽然有些遗憾,但我明白这是为了满足业务需求。 2. 持续学习与自我提升 技术领域日新月异,作为开发者,我们必须不断学习新知识、新技能。我每天都会花一些时间阅读技术博客、参加在线课程或研究新的开发工具。有一次,我遇到了一个棘手的问题,现有的知识无法解决。于是,我开始深入研究相关领域的最新研究成果,最终找到了解决方案。这个过程让我深刻体会到持续学习的重要性。 3. 团队合作与沟通 开发工作往往需要团队合作,而良好的沟通是成功的关键。我曾经参与过一个大型项目,团队成员来自不同的背景和专业领域。为了确保项目的顺利进行,我们定期召开会议,分享进展、讨论问题并制定计划。通过有效的沟通,我们能够及时解决冲突、调整方向并保持团队的凝聚力。 4. 时间管理与优先级 开发者常常面临多个任务和截止日期的压力。为了应对这种挑战,我学会了合理安排时间并确定任务的优先级。我使用任务管理工具来跟踪进度、设置提醒并确保按时完成任务。有一次,我同时负责两个重要项目,时间非常紧张。通过仔细分析每个任务的紧急性和重要性,我制定了一个合理的计划,并成功地按时交付了成果。 5. 调试与解决问题 调试是开发过程中不可避免的一部分。当代码出现问题时,我们需要耐心地分析、定位并修复错误。我记得有一次,我花了整整一天的时间来调试一个复杂的算法。尽管过程艰难,但当我最终找到问题并修复它时,那种成就感是无法言喻的。这个经历让我明白了解决问题的重要性以及坚持不懈的价值。 6. 代码质量与可维护性 作为开发者,我们不仅要关注代码的功能性,还要注重代码的质量和可维护性。我曾经参与过一个项目,由于前期缺乏对代码质量的关注,导致后期维护变得非常困难。为了解决这个问题,我们引入了代码审查和单元测试等实践,以提高代码的可读性和可靠性。通过这些努力,我们成功地改善了代码质量,并减少了维护成本。 7. 用户体验与反馈 开发者的工作不仅仅是编写代码,还要关注用户体验并根据反馈进行改进。我曾经开发过一个移动应用,在发布初期收到了很多用户的反馈意见。通过仔细分析这些反馈,我们发现了一些设计上的缺陷并进行了相应的改进。最终,我们的应用得到了用户的认可和好评。这个经历让我明白了用户体验的重要性以及倾听用户声音的价值。 8. 压力与自我调节 开发工作常常伴随着压力和挑战。为了应对这些压力,我学会了自我调节和放松。我会定期进行体育锻炼、冥想或与朋友聚会来缓解压力。有一次,我遇到了一个非常困难的问题,连续几天都无法解决。在感到沮丧和焦虑时,我决定暂时放下工作,去户外散步并呼吸新鲜空气。这个短暂的休息让我重新焕发了活力,并最终找到了解决问题的方法。 9. 创新与尝试 作为开发者,我们有机会尝试新的技术和方法来解决问题。我曾经参与过一个创新项目,我们尝试使用人工智能技术来改进现有的业务流程。尽管过程中遇到了很多挑战和不确定性,但通过不断的尝试和调整,我们最终取得了成功。这个经历让我明白了创新的重要性以及勇于尝试的价值。 10. 成就感与满足感 尽管开发工作充满了挑战和压力,但当我们看到自己的努力转化为实际的成果时,那种成就感和满足感是无法言喻的。我曾经参与过一个公益项目,我们开发了一个帮助残疾人士的应用程序。当我们看到这个应用真正改善了他们的生活时,那种喜悦和满足感让我深刻体会到了开发工作的意义和价值。
    踩0 评论0
  • 回答了问题 2024-10-29

    AI助力,短剧迎来创新热潮?

    AI技术在短剧创作中的应用还面临着许多挑战。 首先,尽管AI技术在图像识别、语音识别和自然语言处理等领域取得了显著的成就,但距离实现真正的艺术创作仍有较大距离。AI生成的角色在情感传递上可能缺乏真实感和细腻度,难以达到观众的情感需求。 其次,AI短剧的营销点往往并非内容本身,而是技术。大厂们接连入局AI短剧,更想展示的是自己的技术能力而非创作能力。这种创新的展示虽然吸引了一定的关注度,但是否真的意味着让短剧创作变得高效率、低成本、高质量还有待观察。 尽管面临挑战,但我对AI短剧的未来仍然充满信心。 一方面,AI技术的发展将为短剧创作提供更多的可能。例如,通过深度学习算法,AI可以更好地理解人类的情感和行为模式,从而生成更加真实、细腻的角色表演。此外,随着算力设施和大模型的不断完善,AI短剧的创作效率和质量也将得到进一步提升。 另一方面,AI短剧的发展也将推动整个短剧产业的变革。例如,AI短剧的出现将使得更多的独立创作者有机会进入这一领域,从而丰富短剧的内容和形式。同时,AI短剧也将为短剧的传播和推广提供新的渠道和方式,如通过算法推荐实现精准营销等。 在我看来,AI短剧的未来并非是AI取代人类创作者,而是人机协同、人机共生。人类创作者可以利用AI技术完成许多繁琐的工作,从而将更多的精力投入到创意和艺术表达上。而AI则可以作为人类的助手,提供更多的创作灵感和可能性。 例如,在剧本创作阶段,人类创作者可以利用AI工具进行初步的剧本编写和角色设定,然后根据自己的创意和想法进行修改和完善。在拍摄阶段,AI技术可以用于生成虚拟场景和特效,从而降低制作成本和提高制作效率。在后期制作阶段,AI技术可以用于自动剪辑和配音,从而提高制作质量和效率。 通过人机协同的方式,人类创作者和AI技术可以实现优势互补,共同推动短剧产业的发展。
    踩0 评论0
  • 回答了问题 2024-10-25

    1024程序员节,开发者们都在参与社区的哪些活动?

    我参与了通义灵码的互动体验区。通过简单的操作,我便能感受到通义灵码在代码生成、代码补全、代码优化等方面的强大能力。它不仅能够根据我的输入快速生成高质量的代码片段,还能智能地推荐最佳的编码实践,极大地提高了我的开发效率。 在参与活动的过程中,我也产生了一些思考和建议。首先,我希望通义灵码能够进一步丰富其功能,例如增加对更多编程语言的支持,以及提供更深入的代码分析和优化建议。其次,我建议活动组织者能够增加更多的互动环节,例如在线编程挑战、技术分享会等,以促进开发者之间的交流和学习。
    踩0 评论0
  • 回答了问题 2024-10-09

    运动旅游开启新潮流,哪些科技手段能助力你的行程呢?

    1.智能穿戴设备 在运动旅行中,智能穿戴设备是我最亲密的伙伴。它们不仅能够实时监测我的运动数据,如步数、心率、卡路里消耗等,还能提供个性化的运动建议和训练计划。 以我最近一次登山旅行为例,我佩戴了一款智能手表,它具备GPS定位功能,可以实时追踪我的登山路线和海拔高度。在攀登过程中,手表会根据我的心率变化和运动强度,提醒我适时休息或调整速度,以避免过度劳累。此外,手表还内置了多种运动模式,如徒步、跑步、游泳等,可以根据不同的运动类型提供相应的数据分析和建议。 2.AR技术 AR(增强现实)技术在运动旅行中的应用也让我大开眼界。通过AR眼镜或手机应用,我可以将虚拟信息叠加到现实世界中,从而获得更加丰富和有趣的旅行体验。 在一次城市徒步旅行中,我使用了一款AR导航应用。它不仅能够为我提供传统的地图导航,还能在我经过历史建筑或景点时,通过AR技术展示相关的文字、图片或视频信息。例如,当我经过一座古老的教堂时,AR应用会自动识别并展示教堂的历史背景、建筑风格等信息,让我在徒步过程中也能感受到浓厚的文化氛围。 3.VR技术 VR(虚拟现实)技术则为我提供了一种全新的运动旅行方式。通过VR头戴设备和跑步机等设备,我可以在家中或健身房中体验到各种虚拟的运动场景,如登山、滑雪、冲浪等。 我曾经使用过一款名为OmniOne的VR跑步机,它能够让我在虚拟世界中自由行走或跑步。通过与VR游戏的结合,我可以在游戏中探索不同的场景,如热带雨林、沙漠、雪山等,并完成各种挑战和任务。这种身临其境的体验不仅让我感受到了运动的乐趣,还激发了我对不同运动项目的探索欲望。 4.无人机 无人机是我在运动旅行中记录美好瞬间的得力助手。通过无人机的航拍功能,我可以从空中视角俯瞰整个旅行区域,捕捉到一些独特的风景和瞬间。 在一次海边冲浪旅行中,我携带了一台无人机。在冲浪过程中,我将无人机设置为自动跟随模式,它会始终保持在我上方一定高度,并实时记录我的冲浪过程。通过无人机的航拍视频,我不仅能够欣赏到自己冲浪时的英姿,还能从空中视角欣赏到整个海滩的美景。这些视频成为了我旅行中宝贵的回忆,也让我能够与朋友和家人分享我的旅行体验。 5.智能背包 智能背包是我在运动旅行中不可或缺的装备之一。它不仅具备传统背包的储物功能,还集成了多种智能技术,如GPS定位、太阳能充电、防盗报警等。 我曾经使用过一款名为KARRIMOR的智能登山背包。它内置了GPS模块,可以实时追踪我的位置,并在我偏离预定路线时发出提醒。此外,背包还配备了太阳能充电板,可以在户外为我的电子设备充电,解决了我在旅行中经常遇到的电量不足问题。最让我印象深刻的是,这款背包还具备防盗功能,当有人试图打开背包时,它会发出警报声并发送通知到我的手机上,有效保护了我的财物安全。
    踩0 评论0
正在加载, 请稍后...
滑动查看更多
正在加载, 请稍后...
暂无更多信息