暂时未有相关云产品技术能力~
欢迎各位对内容方向及质量提需求,我们尽量满足,将国外优质的内容呈现给大家!
人类最难让计算机做的事情之一就是创造性地思考。计算机非常善于从事人们精确指定的工作,并且完成的速度非常快。而创造力是一个抽象的概念,把给计算机赋予创造力已经被证明是机器学习方面一个非常困难的的挑战。
还在为找不到机器学习入门练手项目而感到无奈吗?本指南中,将给大家带来8个适合初学者学习的有趣的机器学习项目,简单易学,相信会增添大家学习机器学习的信心。
C++也能玩转深度学习了?没错,高性能C++深度学习库(DLL)已经发布了,本文作者为了满足自己的需求,开发了支持C++接口的深度学习库。作者特意用了两个小例子让你见识一下C++也能玩转深度学习,而且玩的比其他库还要6!
本文通过两个小例子介绍了如何使用Keras完成使用词嵌入层的相关方法,对于初学者来说,这种教程最为受用,通过不长的代码来教最难的知识。文中有源码!
序列到序列学习(seq2seq)是一种把序列从一个域(例如英语中的句子)转换为另一个域中的序列(例如把相同的句子翻译成法语)的模型训练方法。目前有多种方法可以用来处理这个任务,可以使用RNN,也可以使用一维卷积网络。这里,我们将重点介绍RNN。
作者为了搭建了一个基于Ubuntu和Nvidia的深度学习计算机,阅读了大量的文档来了解细节和规范,并把所做的所有工作整理并记录了下来。
本文介绍了用于自然语言处理任务的标准数据集,在你研究深度学习的时候可以使用。
深度学习作为人工智能的前沿技术,虽然一方面推动者人工智能的发展;但是人类的终极目标四强人工智能。最近也有一些关于类似于笔者认为的广度学习的出现,但是宗其所属,还是应该在深度学习发展的历史上前进。
深度学习作为人工智能的前沿技术,虽然一方面推动者人工智能的发展;但是人类的终极目标是强人工智能,最近也有一些关于类似于笔者认为的广度学习的出现,但是宗其所属,还是应该在深度学习发展的历史上前进。
机器学习中,我们总是要先将源数据处理成符合模型算法输入的形式,比如将文字、声音、图像转化成矩阵。对于文本数据首先要进行分词(tokenization),移除停止词(stop words),然后将词语转化成矩阵形式,然后再输入机器学习模型中,这个过程称为特征提取(feature extraction)或者向量化(vectorization)。
眼界决定人的成就高低,在新的时代只有不断接触新的技术,新的事物,才能紧跟时代潮流,顺势而为。
本文作者通过阅读大量关于自然语言处理多任务的论文,并进行系统的整理分析分类。对于想要了解自然语言处理多任务学习的朋友来说,本文会在理论上给予极大的帮助。
机器学习正处在其“人生巅峰”,对于很多人来说,在人工智能时代转型机器学习无疑是最佳的选择。本文通过系统的分析上百篇翻译博客,制成了机器学习必备手册,对于想要学习的你来说,一定会有很大的帮助。
本文列举了一些常用的深度学习的训练技巧,对这些技巧进行简单的介绍并说明它们的工作原理。涉及范围广,适合深度学习各领域的研究者。
随着大数据越来越火热,数据科学正在成为二十一世纪最流行的科学技术之一,本文为你汇集了数据科学的相关学习资料。
任何技术的入门都是第一只出现的拦路虎,对于初学者来说,工具的安装着实让人头疼。本文作者介绍如何使用Ubuntu入门深度学习的教程,Python版。
有关神经网络和机器学习的文章很多,因为这个主题在最近几年里非常受欢迎。该领域看起来似乎让人难以靠近,并且非常难以理解。但实际上机器学习和神经网络的基本概念不一定像人们想象的那样复杂。本文的目的是通过一个简单的例子来解释机器学习工作原理的高层概念。
概率分布在许多领域都很常见,包括保险、物理、工程、计算机科学甚至社会科学,如心理学和医学。它易于应用,并应用很广泛。本文重点介绍了日常生活中经常能遇到的六个重要分布,并解释了它们的应用。
本文节选自Quora社区上“When would one use Random Forests over Gradient Boosted Machines (GBMs)?”问题的回答,几位博主就随机森林(Random Forests)与梯度提升机(Gradient Boosted Machines, GBMs)的适合场景以及优缺点展开了讨论。
到底什么是人工智能?还对此毫无了解,那么请收下这份根目录!这可能是你见过的关于人工智能最全面的内容,这里有你想了解的关于人工智能的全部。
世界上没有完美无缺的技术,深度学习也是如此。本文着重向我们介绍了深度学习发展的六大障碍!
我们一直使用Pandas,但是却不知道关于Pandas的细节。Pandas开发者深度复盘Pandas,指出了十大关键性问题,并通过介绍了如何使用Apache Arrow来解决这些问题。
想要入门深度学习,不知道其历史怎么可以?本文就通过程序员通用语言——代码来介绍深度学习的发展历史。
对于机器学习项目而言,数据是根本,但是往往我们拿到的是无标签数据,对于这些数据,我们该如何更好的利用它们呢?在本文中,作者提出了一个名为伪标签的半监督学习方法,通过这个方法,我们就可以使用无标签数据来提高机器学习模型的性能,也会让你在更多像Kaggle一样的比赛中受益。
机器学习是当下最火的领域,本文通过一个小例子介绍了其核心算法:决策树和随机森林。
小白也能看懂机器学习?这篇文章用超级玛丽的原理教会你,到底什么是机器学习,让尖端科技不再艰深难懂。
本文探讨的是开发一个能够对心脏磁共振成像(MRI)数据集图像中的右心室自动分割的系统。到目前为止,这主要是通过经典的图像处理方法来处理的。而现代深度学习技术有可能提供更可靠、更自动化的解决方案。
在计算能力为王的时代,具有高性能计算的库正在被广泛大家应用于处理大数据。例如:Numpy,本文介绍了一个新的Python库——Numba, 在计算性能方面,它比Numpy表现的更好。
Tensorflow作为当下最流行的深度学习框架,实现ConvNet(CNN)自然是轻而易举,但是本文创造性的使用的TensorBoard来图形化展示CNN实现过程,极大的提高了研究者的对自己模型的管理能力。
人工智能正在成为一种创造性的力量,本篇文章介绍了GANs的由来和应用,并且探寻GANs在人工智能中的重要意义。
本文作者利用自己过去三个月里所学到的东西,来预测所在城市的房价。所用到的技术有网络爬取技术、文本自然语言处理,图像上的深度学习模型以及梯度增强技术等。
逻辑回归是机器学习中的重要章节,本文将带你从公式推导到算法实现详细讲述这部分内容,想学习这个高大上的技能么,快来看吧!!!
机器学习已经成为当下最火热的技术之一,对于初学者来说,如何快速入门机器学习是至关重要的。本文属于入门级宝典,高手请绕道!
本文介绍了LSTM的发展历史,并且深入浅出的介绍了LSTM的核心思想(无非就是几个高深莫测的公式),作者通过图形化的方法解释了公式,使得核心思想更加容易理解。
LSTM在解决很多实际问题上效果非常好,通过本文你可以了解到在TensorFlow中,如何实现基本的LSTM网络。
深度学习算法在学习和预测方面的能力为实现人工智能应用打开了大门。如今,AI也在其他领域产生了深远的影响。在这篇文章中,我们将讨论AI在一些细分领域方面的应用。
NEAT的意思是“增强拓扑进化网络”,它描述了在进化过程中受遗传修饰启发的自学习机器的算法概念,不妨看看它是如何教机器写代码的。
作者从非专业人士的角度对人工智能常见的误解进行了解释说明。
无监督学习是人工智能时代核心技术,今天我们就来盘点一下2017上半年无监督学习出现了那些重要的研究成果。
本文从最简单的语言模型开始介绍,以优化模型性能为目标,由浅到深的介绍了神经网络模型在语言模型中的应用。
为了防止被窃车辆进入黑市销售,警方使用了一个名为VicRoads的基于网络的服务,该服务用于检查车辆的登记状态。该警局还投资研发了一个固定式汽车牌照扫描器:一个固定的三脚架摄像头,可扫描过往的车辆,并自动识别被窃车辆。
根据代码识别编程语言的源代码分类器将是一个非常有用的工具,因为它可用于在线自动语法高亮和标签建议,比如可用在StackOverflow和技术维基网站上。这个想法促使我们根据最新的AI技术编写一个对代码片段依据编程语言进行分类的模型。
人工智能时代到底拥有什么样的产品思维,才能在人工智能“中场休息”的战场中存活,转入人工智能的下半场。
我们可以创建一个能够对交通标志进行分类的模型,并且让模型自己学习识别这些交通标志中最关键的特征。在这篇文章中,我将演示如何创建一个深度学习架构,这个架构在交通标志测试集上的识别准确率达到了98%。
对于初入门的开发人员,如何为LSTM准备数据一直是一个问题。在为LSTM准备数据的过程中的确有很多需要注意的问题,阅读本文可能会帮助你解决更多的问题。
在这篇文章中,我们将看到一个使用了最新高级构件的例子,包括Estimator(估算器)、Experiment(实验)和Dataset(数据集)。值得注意的是,你可以独立地使用Experiment和Dataset。不妨进来看看作者是如何玩转这些高级API的。
作者通过分析2017年ACL的论文,以及演讲内容,得出了四个NLP深度学习趋势:Linguistic Structure 、 Word Embeddings、Interpretability 、Attention。今天我们就逐一分析一下这四个深度学习趋势。
作者通过分析2017年ACL的论文,以及演讲内容,得出了四个NLP深度学习趋势:Linguistic Structure 、 Word Embeddings、Interpretability 、Attention。今天我们就逐一分析一下这四个深度学习趋势。
数据科学是一个热门的领域,本文介绍数据科学家目前使用的一些热门编程语言,主要是从通用性、性能等方面分析,想入门的或行业研究者可以参考并发表一下自己的观点哦。
机器学习和统计学在数据科学的领域里,已经相爱相杀很多年。今天,就让我们跟随ML从业者和统计学家两者组成团队,解开两者这几十年的“爱恨情仇”。