GAN的一些很酷的应用

简介: 本文主要讲述了生成对抗网络GANs的发展和主要应用。

在GAN发展的最初几年里,我们取得了令人瞩目的进展。当然,现在不会是像恐怖电影里那样有邮票大小的面部照片了。2017年,Gan制作了1024×1024张能愚弄人才童子军的照片。在未来几年,我们可能会看到GAN生成的高质量视频,由此衍生的商业应用程序即将来临。作为GAN系列的一部分,我们研究了一些很酷的应用程序,希望它们能作你的GAN应用程序的灵感来源。

创建动画角色

众所周知,游戏开发和动画制作成本很高,并且雇佣了许多制作艺术家来完成相对常规的任务。但通过GAN就可以自动生成动画角色并为其上色。

_IMG_3426


使用Generative Adversarial Networks创建自动动画人物角色

发生器和鉴别器由多层卷积层、批标准化和具有跳过链接的relu组成。

_IMG_3425

来源

姿势引导人形像生成

通过姿势的附加输入,我们可以将图像转换为不同的姿势。例如,右上角图像是基础姿势,右下角是生成的图像。

_IMG_3427

下面的优化结果列是生成的图像。

_IMG_3428


姿势引导人图像生成

该设计由二级图像发生器和鉴频器组成。生成器使用元数据(姿势)和原始图像重建图像。鉴别器使用原始图像作为CGAN设计标签输入的一部分。

_IMG_3429


姿势引导人图像生成

CycleGAN

跨域名转让将很可能成为第一批商业应用。GANs将图像从一个领域(如真实的风景)转换为另一个领域(莫奈绘画或梵高)。

_IMG_3430


CycleGAN

例如,它可以在斑马和马之间转换图片。

_IMG_3439


CycleGAN

Cyclegan构建了两个网络G和F来构建从一个域到另一个域以及反向的图像。它使用鉴别器d来批评生成的图像有多好。例如,G将真实图像转换为梵高风格的绘画,并且DY用于区分图像是真实的还是生成的。

域A到域B:

_IMG_3432

我们在反向域B域A中重复该过程:

_IMG_3433

PixelDTGAN

根据名人图片推荐商品已经成为时尚博客和电子商务的热门话题。Pixeldtgan的作用就是从图像中创建服装图像和样式。

_IMG_3434


_IMG_3435


PixelDTGAN

_IMG_3436


PixelDTGAN

超分辨率

从低分辨率创建超分辨率图像。这是GAN显示出非常令人印象深刻的结果,也是具有直接商业可能性的一个领域。

_IMG_3437


SRGAN

与许多GAN的设计类似,它是由多层卷积层、批标准化、高级relu和跳过连接组成。

_IMG_3438


SRGAN

GAN的逐步发展

Progressive GAN可能是第一个展示商业化图像质量的GAN之一。以下是由GAN创建的1024×1024名人形象。

01


GAN的逐步发展

它采用分而治之的策略,使训练更加可行。卷积层的一次又一次训练构建出2倍分辨率的图像。

_IMG_3440

在9个阶段中,生成1024×1024图像。

_IMG_3446


GAN的逐步发展

高分辨率图像合成

需要注意的是这并非图像分割,而是从语义图上生成图像。由于采集样本非常昂贵,我们采用生成的数据来补充培训数据集,以降低开发成本。在训练自动驾驶汽车时可以自动生成视频,而不是看到它们在附近巡航,这就为我们的生活带来了便捷。

网络设计:

_IMG_3445


pix2pixHD


_IMG_3444


pix2pixHD

文本到图像(StackGAN

文本到图像是域转移GAN的早期应用之一。比如,我们输入一个句子就可以生成多个符合描述的图像。

02


StackGAN


_IMG_3448


来源

文本到图像合成

另一个比较通用的实现:

_IMG_3449


生成对抗性文本到图像合成

人脸合成

不同姿态下的合成面:使用单个输入图像,我们可以在不同的视角下创建面。例如,我们可以使用它来转换更容易进行人脸识别图像。

03


TP-GAN


_IMG_3450


TP-GAN

图像修复

几十年前,修复图像一直是一个重要的课题。gan就可以用于修复图像并用创建的“内容”填充缺失的部分。

_IMG_3486


上下文编码器

学习联合分配

用面部字符P(金发,女性,微笑,戴眼镜),P(棕色,男性,微笑,没有眼镜)等不同组合创建GAN是很不现实的。维数的诅咒使得GAN的数量呈指数增长。但我们可以学习单个数据分布并将它们组合以形成不同的分布,即不同的属性组合。

05


04


CoGAN


_IMG_3451


CoGAN

DiscoGAN

DiscoGAN提供了匹配的风格:许多潜在的应用程序。DiscoGAN在没有标签或配对的情况下学习跨域关系。例如,它成功地将样式(或图案)从一个域(手提包)传输到另一个域(鞋子)。

_IMG_3452


DiscoGAN

DiscoGAN和cyclegan在网络设计中非常相似。

_IMG_3453


DiscoGAN

Pix2Pix

PIX2PIx是一种图像到图像的翻译,在跨域Gan的论文中经常被引用。例如,它可以将卫星图像转换为地图(图片左下角)。

_IMG_3478


pix2pix

DTN

从图片中创建表情符号。

_IMG_3476


DTN


_IMG_3474


DTN

纹理合成

_IMG_3456


MGAN

图像编辑 (IcGAN)

重建或编辑具有特定属性的图像。

_IMG_3473


IcGAN


_IMG_3472


IcGAN

人脸老化(Age-cGAN)

_IMG_3459


Age-cGAN


_IMG_3458


Age-cGAN

神经照片编辑器

基于内容的图像编辑:例如,扩展发带。

_IMG_3471


神经照片编辑

细化图像

_IMG_3470

目标检测

这是用gan增强现有解决方案的一个应用程序。

_IMG_3469


Perceptual GAN

图像融合

将图像混合在一起。

06


GP-GAN

视频生成

创建新的视频序列。它识别出什么是背景,并为前台操作创建新的时间序列。

视频链接

生成三维对象

这是用gan创建三维对象时经常引用的一篇文章。

视频链接


3DGAN


_IMG_3461


3DGAN

音乐的产生

GaN可以应用于非图像领域,如作曲。

_IMG_3462


MidiNet


_IMG_3463


MidiNet

医疗(异常检测)

GAN还可以扩展到其他行业,例如医学中的肿瘤检测。

_IMG_3464


AnoGAN


_IMG_3465


AnoGAN

进一步阅读

本文展示了一些GAN的相关应用程序。如果你感兴趣想进一步研究GAN可以继续阅读以下文章:

第一部分:重点介绍如何应用gans解决深层次学习问题,以及为什么培训gans如此困难。
GAN-关于GAN的综合考察(上)
第二部分:GAN培训问题解决概述。
GAN-关于GAN的综合考察(下)

本系列中的所有文章:
GaN-GaN系列(从头到尾)

作者信息

Jonathan Hui

本文由阿里云云栖社区组织翻译。
文章原标题《GAN — Some cool applications of GANs》,译者:么凹,审校:Viola
文章简译,更为详细的内容,请查看原文

相关文章
|
PyTorch 算法框架/工具
pytorch读书比较关键点
pytorch读书比较关键点
135 0
|
机器学习/深度学习 PyTorch 算法框架/工具
Pytorch基于迁移学习的Alexnet卷积神经网络-手撕(可直接运行)-部分地方不懂的可以参考我上一篇手撕Alexnet神经网络的注释 两个基本一样 只是这个网络是迁移过来的
Pytorch基于迁移学习的Alexnet卷积神经网络-手撕(可直接运行)-部分地方不懂的可以参考我上一篇手撕Alexnet神经网络的注释 两个基本一样 只是这个网络是迁移过来的
|
机器学习/深度学习 数据采集 数据处理
ConvNeXt实战:使用ConvNeXt实现植物幼苗分类(自创,非官方)
ConvNeXts 完全由标准 ConvNet 模块构建,在准确性和可扩展性方面与 Transformer 竞争,实现 87.8% ImageNet top-1 准确率,在 COCO 检测和 ADE20K 分割方面优于 Swin Transformers,同时保持标准 ConvNet 的简单性和效率。
2435 1
ConvNeXt实战:使用ConvNeXt实现植物幼苗分类(自创,非官方)
|
机器学习/深度学习 并行计算 PyTorch
给学妹换个风格,画风突变【❤️CVPR 2020 风格迁移之NICE-GAN❤️】
重用判别器进行编码:实现无监督的图像到图像翻译;
396 0
给学妹换个风格,画风突变【❤️CVPR 2020 风格迁移之NICE-GAN❤️】
|
机器学习/深度学习 算法 PyTorch
白话生成对抗网络 GAN,50 行代码玩转 GAN 模型!【附源码】
白话生成对抗网络 GAN,50 行代码玩转 GAN 模型!【附源码】
352 0
白话生成对抗网络 GAN,50 行代码玩转 GAN 模型!【附源码】
|
机器学习/深度学习 人工智能 Go
谷歌发布“怪兽生成器”!你画草图,GAN帮你生成幻想生物
谷歌发布“怪兽生成器”!你画草图,GAN帮你生成幻想生物
682 0
|
机器学习/深度学习 数据可视化 TensorFlow
教你如何使用GAN为口袋妖怪上色
在本案例中,我们用神经网络来给口袋妖怪的线框图上色。
798 0
|
机器学习/深度学习 TensorFlow 算法框架/工具
|
机器学习/深度学习 JavaScript 算法
手把手教你生成对抗网络 GAN,50 行代码玩转 GAN 模型!
本文为大家介绍了生成对抗网络(Generate Adversarial Network,GAN),以最直白的语言来讲解它,最后实现一个简单的 GAN 程序来帮助大家加深理解。
2324 0