RocketMQ实战—8.营销系统业务和方案介绍
本文详细介绍了电商营销系统的业务流程、技术架构及挑战解决方案。涵盖核心交易与支付后履约流程,优惠券和促销活动的发券、领券、用券、销券机制,以及会员与推送的数据库设计。技术架构基于Nacos服务注册中心、Dubbo RPC框架、RocketMQ消息中间件和XXLJob分布式调度工具,实现系统间高效通信与任务管理。针对千万级用户量下的推送和发券场景,提出异步化、分片处理与惰性发券等优化方案,解决高并发压力。同时,通过RocketMQ实现系统解耦,提升扩展性,并利用XXLJob完成爆款商品推荐的分布式调度推送。整体设计确保系统在大规模用户场景下的性能与稳定性。
RocketMQ实战—6.生产优化及运维方案
本文围绕RocketMQ集群的使用与优化,详细探讨了六个关键问题。首先,介绍了如何通过ACL配置实现RocketMQ集群的权限控制,防止不同团队间误用Topic。其次,讲解了消息轨迹功能的开启与追踪流程,帮助定位和排查问题。接着,分析了百万消息积压的处理方法,包括直接丢弃、扩容消费者或通过新Topic间接扩容等策略。此外,提出了针对RocketMQ集群崩溃的金融级高可用方案,确保消息不丢失。同时,讨论了为RocketMQ增加限流功能的重要性及实现方式,以提升系统稳定性。最后,分享了从Kafka迁移到RocketMQ的双写双读方案,确保数据一致性与平稳过渡。
RocketMQ实战—5.消息重复+乱序+延迟的处理
本文围绕RocketMQ的使用与优化展开,分析了优惠券重复发放的原因及解决方案。首先,通过案例说明了优惠券系统因消息重复、数据库宕机或消费失败等原因导致重复发券的问题,并提出引入幂等性机制(如业务判断法、Redis状态判断法)来保证数据唯一性。其次,探讨了死信队列在处理消费失败时的作用,以及如何通过重试和死信队列解决消息处理异常。接着,分析了订单库同步中消息乱序的原因,提出了基于顺序消息机制的代码实现方案,确保消息按序处理。此外,介绍了利用Tag和属性过滤数据提升效率的方法,以及延迟消息机制优化定时退款扫描的功能。最后,总结了RocketMQ生产实践中的经验.
FreeMQTT & FreeMQTT plus:物联网通信的强大助力
FreeMQTT 和 FreeMQTT plus 是基于 MQTT 协议的物联网通信解决方案。FreeMQTT 是用 Python 实现的开源 MQTT Server,支持多协议传输、应用分组隔离,易于安装和跨平台运行。FreeMQTT plus 则是分布式集群架构的新型 Broker,具备高可用性、会话同步优化、灵活扩展能力及高效消息路由特性。二者适用于智能家居、工业物联网和智能交通等领域,为开发者提供轻量级、高性能的通信工具,助力构建稳定可靠的物联网系统。
RocketMQ实战—4.消息零丢失的方案
本文分析了用户支付完成后未收到红包的问题,深入探讨了RocketMQ事务消息机制的实现原理及其在确保消息零丢失中的作用。首先,通过全链路分析发现消息可能在推送、存储或消费环节丢失。接着,介绍了RocketMQ事务消息机制如何通过half消息、本地事务执行及回调确认来保证消息发送成功,并详细解析了其底层原理,如half消息对消费者不可见、rollback与commit操作等。同时,对比了同步重试方案,指出其在复杂场景下的局限性。