Redis

首页 标签 Redis
# Redis #
关注
24428内容
基于 Flink + Redis 的实时特征工程实战:电商场景动态分桶计数实现
本文介绍了基于 Flink 与 Redis 构建的电商场景下实时特征工程解决方案,重点实现动态分桶计数等复杂特征计算。通过流处理引擎 Flink 实时加工用户行为数据,结合 Redis 高性能存储,满足推荐系统毫秒级特征更新需求。技术架构涵盖状态管理、窗口计算、Redis 数据模型设计及特征服务集成,有效提升模型预测效果与系统吞吐能力。
特征存储避坑指南:对比 Feast/Hopsworks 在金融风控场景的落地实践
金融风控场景对特征存储系统有严苛要求,包括低延迟、强一致性、多源数据处理及合规性。本文对比Feast与Hopsworks两大平台的实战经验,解析其在特征服务优化、版本控制、性能调优等方面的优势与陷阱,并提出混合架构方案兼顾实时性与计算效率。通过实践验证,可显著提升系统性能并降低成本。
|
3月前
|
RedisDesktopManager免费软件下载,Redis桌面管理器(又名RDM),redis管理器
Redis桌面管理器(RDM)是一款支持Windows、Linux和MacOS的开源Redis数据库管理工具,提供易于使用的GUI界面,支持SSL/TLS加密、SSH隧道及云服务集成。本文档介绍了RDM的安装方法,并详细列出了Redis常用命令分类教程,包括键操作、字符串、哈希、列表、集合、有序集合、发布/订阅、事务及服务器管理等核心功能,帮助用户快速上手Redis开发与管理。
|
3月前
| |
来自: 数据库
流量洪峰应对术:Redis持久化策略与内存压测避坑指南
本文深入解析Redis持久化策略与内存优化技巧,涵盖RDB快照机制、AOF重写原理及混合持久化实践。通过实测数据揭示bgsave内存翻倍风险、Hash结构内存节省方案,并提供高并发场景下的主从复制冲突解决策略。结合压测工具链构建与故障恢复演练,总结出生产环境最佳实践清单。
|
3月前
|
每天百万访问也不怕,Redis帮你搞定UV统计
本文介绍了使用Redis实现高性能UV统计系统的方法。Redis凭借其内存数据库特性,支持毫秒级响应和自动去重,非常适合高并发场景下的访客统计。核心思路是利用Redis的Set数据结构作为"每日签到墙",通过记录用户访问ID实现自动去重,并设置24小时过期时间。文章提供了Python代码示例,展示如何记录用户访问和获取当日UV统计数据,还可扩展实现多页面UV统计。相比传统数据库方案,Redis方案更加轻量高效,是中小型网站实现流量统计的理想选择。
|
3月前
| |
来自: 云原生
Redis 实操要点:Java 最新技术栈的实战解析
本文介绍了基于Spring Boot 3、Redis 7和Lettuce客户端的Redis高级应用实践。内容包括:1)现代Java项目集成Redis的配置方法;2)使用Redisson实现分布式可重入锁与公平锁;3)缓存模式解决方案,包括布隆过滤器防穿透和随机过期时间防雪崩;4)Redis数据结构的高级应用,如HyperLogLog统计UV和GeoHash处理地理位置。文章提供了详细的代码示例,涵盖Redis在分布式系统中的核心应用场景,特别适合需要处理高并发、分布式锁等问题的开发场景。
|
3月前
| |
来自: 数据库
Java Redis 面试题集锦 常见高频面试题目及解析
本文总结了Redis在Java中的核心面试题,包括数据类型操作、单线程高性能原理、键过期策略及分布式锁实现等关键内容。通过Jedis代码示例展示了String、List等数据类型的操作方法,讲解了惰性删除和定期删除相结合的过期策略,并提供了Spring Boot配置Redis过期时间的方案。文章还探讨了缓存穿透、雪崩等问题解决方案,以及基于Redis的分布式锁实现,帮助开发者全面掌握Redis在Java应用中的实践要点。
|
3月前
| |
来自: 数据库
高并发秒杀系统实战(Redis+Lua分布式锁防超卖与库存扣减优化)
秒杀系统面临瞬时高并发、资源竞争和数据一致性挑战。传统方案如数据库锁或应用层锁存在性能瓶颈或分布式问题,而基于Redis的分布式锁与Lua脚本原子操作成为高效解决方案。通过Redis的`SETNX`实现分布式锁,结合Lua脚本完成库存扣减,确保操作原子性并大幅提升性能(QPS从120提升至8,200)。此外,分段库存策略、多级限流及服务降级机制进一步优化系统稳定性。最佳实践包括分层防控、黄金扣减法则与容灾设计,强调根据业务特性灵活组合技术手段以应对高并发场景。
|
3月前
| |
来自: 弹性计算
让AI来背锅?不,是它教我们别再背锅!——AI在运维数据挖掘里的那些“神操作”
让AI来背锅?不,是它教我们别再背锅!——AI在运维数据挖掘里的那些“神操作”
|
3月前
|
Redis数据持久性保障机制
因此,Redis的持久化机制就像一套完善的保险系统,它可以确保数据即使在意外故障面前,也能够像凤凰涅槃一样安全地重生。通过对这些持久化策略的灵活应用和配置,你可以让Redis成为一个既快速又可靠的数据存储解决方案。
免费试用