计算机视觉

首页 标签 计算机视觉
# 计算机视觉 #
关注
25930内容
|
1月前
|
YOLOv11改进策略【小目标改进】| Shape-NWD:融合改进,结合Shape-IoU和NWD 更好地适应小目标特性
YOLOv11改进策略【小目标改进】| Shape-NWD:融合改进,结合Shape-IoU和NWD 更好地适应小目标特性
|
1月前
|
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
|
1月前
|
YOLOv11改进策略【小目标改进】| 添加专用于小目标的检测层 附YOLOv1~YOLOv11的检测头变化详解
YOLOv11改进策略【小目标改进】| 添加专用于小目标的检测层 附YOLOv1~YOLOv11的检测头变化详解
|
1月前
|
YOLOv11改进策略【Head】| (独家改进)轻量化检测头:利用 EfficientNet 中的移动倒置瓶颈模块 MBConv 改进检测头
YOLOv11改进策略【Head】| (独家改进)轻量化检测头:利用 EfficientNet 中的移动倒置瓶颈模块 MBConv 改进检测头
|
1月前
|
YOLOv11改进策略【注意力机制篇】| 2024 蒙特卡罗注意力(MCAttn)模块,提高小目标的关注度
YOLOv11改进策略【注意力机制篇】| 2024 蒙特卡罗注意力(MCAttn)模块,提高小目标的关注度
|
1月前
|
YOLOv11改进策略【损失函数篇】| NWD损失函数,提高小目标检测精度
YOLOv11改进策略【损失函数篇】| NWD损失函数,提高小目标检测精度
|
1月前
|
YOLOv11改进策略【SPPF】| AIFI : 基于Transformer的尺度内特征交互,在降低计算成本的同时提高模型的性能
YOLOv11改进策略【SPPF】| AIFI : 基于Transformer的尺度内特征交互,在降低计算成本的同时提高模型的性能
|
1月前
|
YOLOv11改进策略【小目标改进】| 2024-TOP 自适应阈值焦点损失(ATFL)提升对小目标的检测能力
YOLOv11改进策略【小目标改进】| 2024-TOP 自适应阈值焦点损失(ATFL)提升对小目标的检测能力
免费试用