经测试发现,相同配置条件下(阿里云线上notebook),同样的识别和合成代码,在cpu配置下,运行语音识别耗时平均在400ms ~ 500ms,语音合成的耗时平均在700ms-900ms,切换成gpu配置环境,相比cpu并没有明显提升,识别相差不超过100ms,合成相差不超过200ms,是gpu只在模型训练方面有比较大的速度提升,而不能有效提高推理速度吗?如果可以,是要做额外的操作来使gpu有效提升速度吗
是的,gpu对训练有较好的提升效果,对目前代码的推理来说加速有限,目前代码的推理纯粹实现在pytorch或tf上,建议使用其他推理框架(比如tensorrt)来针对一些模型进行加速。