列出了传统磁盘 shuffle 的主要问题是哪些?
·碎片读:一个典型的 2k*1k shuffle pipe 在上游每个 mapper 处理 256MB 数据时,一个 mapper 写给一个 reducer 的数据量平均为 256KB,而从 HDD 磁盘上 一次读小于 256KB 这个级别的数据量是很不经济的,高 iops 低 throughput 严重影响作业性能;
·稳定性:由于 HDD 上严重的碎片读现象,造成 reduce input 阶段较高的出错比率,触发上游重跑生成shuffle数据更是让作业的执行时间成倍拉长。
以上内容摘自《“伏羲”神算》电子书,点击https://developer.aliyun.com/topic/download?id=873
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。
MaxCompute(原ODPS)是一项面向分析的大数据计算服务,它以Serverless架构提供快速、全托管的在线数据仓库服务,消除传统数据平台在资源扩展性和弹性方面的限制,最小化用户运维投入,使您经济并高效的分析处理海量数据。