【目标跟踪】基于贝叶斯网络实现目标滤波跟踪附matlab代码

简介: 【目标跟踪】基于贝叶斯网络实现目标滤波跟踪附matlab代码

 1 简介

运动目标跟踪技术作为计算机视觉以及图像处理等领域中最活跃的研究课题之一,已经在军事,安全监控,人机交互和智能交通等多个方面发挥着积极的作用,并且日趋重要.现有的目标跟踪算法存在着一定的不足:一是观测模型不够稳定,如果目标跟踪算法是利用单一的颜色特征构建目标模型,这个模型一般会对场景中光照强度的变化比较敏感,致使跟踪不稳定;二是场景中出现遮挡的情形时,会导致跟丢目标的情况.贝叶斯网络是描述随机变量之间依赖关系的图形模型,是一种基于概率推理的图形化网络.而动态贝叶斯网络可以看作是动态概率关系的一种压缩表示形式,它是静态贝叶斯网络在时间领域的拓展,动态贝叶斯网络作为一种有效地处理不确定性问题的数学工具,已经在计算机视觉领域得到了广泛的应用.

2 部分代码

clc;clear;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%初始化W=200;  %该区域的长度L=200;  %该区域的宽度M=36;   %该区域内节点数Nod=NodGen(W,L,M,3);    %生成节点分布图ar=3;   %测距方差ao=(3/180)*pi;  %测角方差T=50;   %总的仿真时间V=5;    %目标运动速度,这在本仿真中为已知量av=1;   %策动噪声方差Target_Real{1}=[25 25];     %第一时刻目标参考位置Target_Real{1}=[25 25]+av*[randn randn];    %第一时刻目标真实位置for t=1:T%     Target_Real{t+1}=Target_Real{t}+V^0.5*[1 1]+av*randn*[1 1];    Target_Real{t+1}=Target_Real{t}+V/2^0.5*[1 1]+av*randn*[1 1];end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%图示仿真结果for t=1:T    x(t)=Target_Real{t}(1);    y(t)=Target_Real{t}(2);        x1(t)=Target_Z{t}(1);    y1(t)=Target_Z{t}(2);    x2(t)=Target_Esti{t}(1);    y2(t)=Target_Esti{t}(2);endfigure,plot(x,y,x1,y1,x2,y2,x,y,'.',x1,y1,'.',x2,y2,'.')legend('真实目标轨迹','观测轨迹','滤波后轨迹')axis([0 W 0 L])for t=1:T    D1(t)=( (x(t)-x1(t))^2 + (y(t)-y1(t))^2 )^0.5;    D2(t)=( (x(t)-x2(t))^2 + (y(t)-y2(t))^2 )^0.5;endfigure,plot(1:T,D1,1:T,D2)legend('观测误差','滤波后误差')(sum(D1.^2/T))^0.5(sum(D2.^2/T))^0.5sum(D1)/Tsum(D2)/T

3 仿真结果

image.gif编辑image.gif编辑

4 参考文献

[1]陈天民. 基于动态贝叶斯网络的运动目标跟踪方法研究[D]. 中国石油大学(华东), 2012.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。


相关文章
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于BP神经网络的苦瓜生长含水量预测模型matlab仿真
本项目展示了基于BP神经网络的苦瓜生长含水量预测模型,通过温度(T)、风速(v)、模型厚度(h)等输入特征,预测苦瓜的含水量。采用Matlab2022a开发,核心代码附带中文注释及操作视频。模型利用BP神经网络的非线性映射能力,对试验数据进行训练,实现对未知样本含水量变化规律的预测,为干燥过程的理论研究提供支持。
|
30天前
|
机器学习/深度学习 网络架构 计算机视觉
目标检测笔记(一):不同模型的网络架构介绍和代码
这篇文章介绍了ShuffleNetV2网络架构及其代码实现,包括模型结构、代码细节和不同版本的模型。ShuffleNetV2是一个高效的卷积神经网络,适用于深度学习中的目标检测任务。
64 1
目标检测笔记(一):不同模型的网络架构介绍和代码
|
18天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
28天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
29天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。
|
1月前
|
机器学习/深度学习 算法 5G
基于BP神经网络的CoSaMP信道估计算法matlab性能仿真,对比LS,OMP,MOMP,CoSaMP
本文介绍了基于Matlab 2022a的几种信道估计算法仿真,包括LS、OMP、NOMP、CoSaMP及改进的BP神经网络CoSaMP算法。各算法针对毫米波MIMO信道进行了性能评估,通过对比不同信噪比下的均方误差(MSE),展示了各自的优势与局限性。其中,BP神经网络改进的CoSaMP算法在低信噪比条件下表现尤为突出,能够有效提高信道估计精度。
35 2
|
1月前
|
机器学习/深度学习 传感器 安全
基于模糊神经网络的移动机器人路径规划matlab仿真
该程序利用模糊神经网络实现移动机器人的路径规划,能在含5至7个静态未知障碍物的环境中随机导航。机器人配备传感器检测前方及其两侧45度方向上的障碍物距离,并根据这些数据调整其速度和方向。MATLAB2022a版本下,通过模糊逻辑处理传感器信息,生成合理的路径,确保机器人安全到达目标位置。以下是该程序在MATLAB2022a下的测试结果展示。
|
23天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。
|
2天前
|
SQL 安全 物联网
网络安全与信息安全:深入探讨网络漏洞、加密技术及安全意识###
网络安全与信息安全是当今数字化时代的重要议题。本文将详细探讨网络安全和信息安全的差异,重点介绍常见的网络漏洞、加密技术以及如何提升用户和组织的安全意识。通过具体案例和技术分析,帮助读者理解这些关键概念,并提供实用的建议以应对潜在的网络威胁。 ###

热门文章

最新文章