1 简介
为了提高分类的准确性,该模型引入具有全局寻优特点的头脑风暴优化算法,用于模拟人类提出创造性思维解决问题的过程,具有强大的全局搜索和局部搜索的能力,同时利用BP神经网络所具有良好的非线性映射能力,学习适应能力和容错性,最大程度上考虑到海洋水质评价因素的非线性和非平稳的关系,得到BP神经网络的各层权值,阈值的最优解,实验结果表明该评价模型能够克服局部极小问题,分类结果准确性较高,并具有一定的实用性.
2 部分代码
function best_fitness = bso2(fun,n_p,n_d,n_c,rang_l,rang_r,max_iteration)% fun = fitness_function% n_p; population size% n_d; number of dimension% n_c: number of clusters% rang_l; left boundary of the dynamic range% rang_r; right boundary of the dynamic rangeprob_one_cluster = 0.8; % probability for select one cluster to form new individual; stepSize = ones(1,n_d); % effecting the step size of generating new individuals by adding random valuespopu = rang_l + (rang_r - rang_l) * rand(n_p,n_d); % initialize the population of individualspopu_sorted = rang_l + (rang_r - rang_l) * rand(n_p,n_d); % initialize the population of individuals sorted according to clustersn_iteration = 0; % current iteration number% initialize cluster probability to be zerosprob = zeros(n_c,1);best = zeros(n_c,1); % index of best individual in each clustercenters = rang_l + (rang_r - rang_l) * rand(n_c,n_d); % initialize best individual in each clustercenters_copy = rang_l + (rang_r - rang_l) * rand(n_c,n_d); % initialize best individual-COPY in each cluster FOR the purpose of introduce random bestbest_fitness = 1000000*ones(max_iteration,1);fitness_popu = 1000000*ones(n_p,1); % store fitness value for each individualfitness_popu_sorted = 1000000*ones(n_p,1); % store fitness value for each sorted individualindi_temp = zeros(1,n_d); % store temperary individual% calculate fitness for each individual in the initialized populationfor idx = 1:n_p fitness_popu(idx,1) = fun(popu(idx,:));endwhile n_iteration < max_iteration cluster = kmeans(popu, n_c,'Distance','cityblock','Start',centers,'EmptyAction','singleton'); % k-mean cluster % clustering fit_values = 100000000000000000000000000.0*ones(n_c,1); % assign a initial big fitness value as best fitness for each cluster in minimization problems number_in_cluster = zeros(n_c,1); % initialize 0 individual in each cluster for idx = 1:n_p number_in_cluster(cluster(idx,1),1)= number_in_cluster(cluster(idx,1),1) + 1; % find the best individual in each cluster if fit_values(cluster(idx,1),1) > fitness_popu(idx,1) % minimization fit_values(cluster(idx,1),1) = fitness_popu(idx,1); best(cluster(idx,1),1) = idx; end end % form population sorted according to clusters counter_cluster = zeros(n_c,1); % initialize cluster counter to be 0 acculate_num_cluster = zeros(n_c,1); % initialize accumulated number of individuals in previous clusters for idx =2:n_c acculate_num_cluster(idx,1) = acculate_num_cluster((idx-1),1) + number_in_cluster((idx-1),1); end %start form sorted population for idx = 1:n_p counter_cluster(cluster(idx,1),1) = counter_cluster(cluster(idx,1),1) + 1 ; temIdx = acculate_num_cluster(cluster(idx,1),1) + counter_cluster(cluster(idx,1),1); popu_sorted(temIdx,:) = popu(idx,:); fitness_popu_sorted(temIdx,1) = fitness_popu(idx,1); end % record the best individual in each cluster for idx = 1:n_c centers(idx,:) = popu(best(idx,1),:); end if (rand() < 0.2) % select one cluster center to be replaced by a randomly generated center cenIdx = ceil(rand()*n_c); centers(cenIdx,:) = rang_l + (rang_r - rang_l) * rand(1,n_d); end % calculate cluster probabilities based on number of individuals in each cluster for idx = 1:n_c prob(idx,1) = number_in_cluster(idx,1)/n_p; if idx > 1 prob(idx,1) = prob(idx,1) + prob(idx-1,1); end end % generate n_p new individuals by adding Gaussian random values for idx = 1:n_p r_1 = rand(); % probability for select one cluster to form new individual if r_1 < prob_one_cluster % select one cluster r = rand(); for idj = 1:n_c if r < prob(idj,1) if rand() < 0.4 % use the center indi_temp(1,:) = centers(idj,:); else % use one randomly selected cluster indi_1 = acculate_num_cluster(idj,1) + ceil(rand() * number_in_cluster(idj,1)); indi_temp(1,:) = popu_sorted(indi_1,:); end break end end else % select two clusters % pick two clusters cluster_1 = ceil(rand() * n_c); indi_1 = acculate_num_cluster(cluster_1,1) + ceil(rand() * number_in_cluster(cluster_1,1)); cluster_2 = ceil(rand() * n_c); indi_2 = acculate_num_cluster(cluster_2,1) + ceil(rand() * number_in_cluster(cluster_2,1)); tem = rand(); if rand() < 0.5 %use center indi_temp(1,:) = tem * centers(cluster_1,:) + (1-tem) * centers(cluster_2,:); else % use randomly selected individuals from each cluster indi_temp(1,:) = tem * popu_sorted(indi_1,:) + (1-tem) * popu_sorted(indi_2,:); end end stepSize = logsig(((0.5*max_iteration - n_iteration)/20)) * rand(1,n_d); indi_temp(1,:) = indi_temp(1,:) + stepSize .* normrnd(0,1,1,n_d); % if better than the previous one, replace it fv = fun(indi_temp); if fv < fitness_popu(idx,1) % better than the previous one, replace fitness_popu(idx,1) = fv; popu(idx,:) = indi_temp(1,:); end end % keep the best for each cluster for idx = 1:n_c popu(best(idx,1),:) = centers_copy(idx,:); fitness_popu(best(idx,1),1) = fit_values(idx,1); end n_iteration = n_iteration +1; % record the best fitness in each iteration best_fitness(n_iteration, 1) = min(fit_values);end
3 仿真结果
编辑
4 参考文献
[1]李海涛, 邵泽东. 基于头脑风暴优化算法与BP神经网络的海水水质评价模型研究[J]. 应用海洋学学报, 2020, 39(1):6.
博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。
部分理论引用网络文献,若有侵权联系博主删除。