【语音分析】语音信号线性预测分析Matlab实现

简介: 【语音分析】语音信号线性预测分析Matlab实现

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

语音信号是我们日常生活中最常用的交流工具之一。无论是电话通话、语音助手还是语音识别技术,语音信号都扮演着重要的角色。要深入了解语音信号,我们需要使用一些特定的技术和算法来对其进行分析和处理。其中之一就是语音信号的线性预测分析。

线性预测分析(Linear Predictive Analysis,简称LPA)是一种广泛应用于语音信号处理的技术。它可以用来估计语音信号的声道特性以及声音的产生机制。通过对语音信号进行线性预测分析,我们可以得到语音信号的参数,进而实现语音合成、语音转换、语音增强等应用。

在进行线性预测分析之前,我们首先需要了解语音信号的基本原理。语音信号是由人的声带振动产生的,经过喉咙、口腔和鼻腔等声道的共同作用,最终形成可听的声音。这一过程可以用声道模型来描述,声道模型假设声音信号可以由一个激励信号通过一个线性滤波器产生。

线性预测分析的目标是估计这个线性滤波器的参数。具体来说,我们希望找到一组滤波器系数,使得通过这个滤波器产生的声音尽可能接近实际的语音信号。这就需要我们通过分析语音信号的频谱特征来估计这些滤波器系数。

在实际应用中,我们通常使用自相关函数来进行线性预测分析。自相关函数可以描述信号与其自身在不同时间延迟下的相似程度。通过计算自相关函数,我们可以得到语音信号的自相关系数,进而估计出滤波器系数。

线性预测分析的一个重要应用是语音合成。通过估计语音信号的声道特性,我们可以合成出与原始语音相似的声音。这在语音合成技术中非常有用,可以用于生成虚拟语音助手的声音,或者改变语音的音色。

除了语音合成,线性预测分析还可以应用于语音转换和语音增强。在语音转换中,我们可以通过修改语音信号的声道特性,将一个人的声音转换成另一个人的声音。这在一些特殊应用中非常有用,比如电影配音或者语音模仿。

在语音增强中,线性预测分析可以用于去除噪声或者改善语音质量。通过估计语音信号的声道特性,我们可以将噪声信号与语音信号进行分离,从而实现噪声的抑制。这对于电话通话或者语音识别等应用非常重要,可以提高语音信号的清晰度和可理解性。

总结一下,语音信号的线性预测分析是一种重要的信号处理技术,可以用于估计语音信号的声道特性和声音产生机制。通过对语音信号进行线性预测分析,我们可以实现语音合成、语音转换和语音增强等应用。这些应用对于语音交流技术的发展和改进具有重要意义,为我们提供了更好的语音体验。

⛄ 部分代码

clc%%%读入语音  [wave Fs]=audioread("test_16k.wav");  wave=wave';        t1=0/Fs:1/Fs:(length(wave)-1)/Fs        plot(t1,wave);           title("原始语音信号时域波形");    xlabel('时间_{/s}');   ylabel('幅度');         grid on;    %sound(wave,Fs);%%%分帧  L       = Fs * 0.025;%每一帧的长度  step  = Fs * 0.005;%每一帧的步进长度  win     = boxcar(L)';%窗长  N       = length(wave);%语音信号点数  wave_x  = enframe(wave',win',step);%分帧处理    n_wave  =size(wave_x,1);%共分的帧数%%%运用Levinson_Durbin算法    i_frame = 190;%选取某一帧信号    p = 13;%阶数    wave_re = wave_x(i_frame,:);%        m = wave_re.*(hamming(L)');%         t=((i-1)*step)/Fs:1/Fs:((i-1)*step+L-1)/Fs;          t=0:(L-1);%           plot(t,m );%        [wave_p, R_test, E_test, a, err_test, alpha]=durbin(wave_re , p );        [R,E,k,alpha,err, re]=durbin(wave_re, p);        [ar,g] = lpc(wave_re , p);%     wave_re =  wave_re.*(hamming(L)');        f=linspace(0,Fs,L/2);%%%DURBIN算法求得    a = re;    test = zeros(1 , L);    test(1)=1;    y=filter(1,a, test);    wave_pe=y;%matlab自带函数求得      a = ar;    test = zeros(1 , L);    test(1)=1;    y1=filter(1,a, test);%%figure(2)         plot(t, wave_re );                          title(['第',num2str( i_frame),'帧信号时域波形']); grid on;figure(4)  F1 = abs(fft(wave_pe  ) )    F2 = abs(fft(wave_re ) )    F3 = abs(fft(y1 ) )    plot(f,  F1(1:L/2),'-b',f,F2(1:L/2),'-r');            title(['第',num2str( i_frame),'帧信号的的频谱及其预测后的LPC(durbin算法)']);        grid on;    figure(5)    plot(f, F3(1:L/2),'-b',f,F2(1:L/2),'-r');             title(['第',num2str( i_frame),'帧信号的的频谱及其预测后的LPC(matlab自带)']);       grid on;

⛄ 运行结果

⛄ 参考文献

[1] 王永飞.基于MATLAB语音信号处理一体化方法分析构建[J].陕西教育学院学报, 2017, 033(009):135-138,144.

[2] 赵淑敏.基于MATLAB实现对语音信号频谱分析[J].江西通信科技, 2010(1):4.DOI:10.3969/j.issn.1673-1131.2010.04.003.

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合





相关文章
|
25天前
|
机器学习/深度学习 算法 数据安全/隐私保护
数据链中常见电磁干扰matlab仿真,对比噪声调频,线性调频,噪声,扫频,灵巧五种干扰模型
本项目展示了用于分析和模拟电磁干扰对数据链系统影响的算法。通过Matlab 2022a运行,提供无水印效果图预览。完整代码包含详细中文注释及操作视频。理论部分涵盖五种常见干扰模型:噪声调频、线性调频、噪声、扫频和灵巧干扰,详细介绍其原理并进行对比分析。灵巧干扰采用智能技术如认知无线电和机器学习,自适应调整干扰策略以优化效果。
|
18天前
|
算法 人机交互 数据安全/隐私保护
基于图像形态学处理和凸包分析法的指尖检测matlab仿真
本项目基于Matlab2022a实现手势识别中的指尖检测算法。测试样本展示无水印运行效果,完整代码含中文注释及操作视频。算法通过图像形态学处理和凸包检测(如Graham扫描法)来确定指尖位置,但对背景复杂度敏感,需调整参数PARA1和PARA2以优化不同手型的检测精度。
|
19天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
空心电抗器的matlab建模与性能仿真分析
空心电抗器是一种无铁芯的电感元件,通过多层并联导线绕制而成。其主要作用是限制电流、滤波、吸收谐波和提高功率因数。电抗器的损耗包括涡流损耗、电阻损耗和环流损耗。涡流损耗由交变磁场引起,电阻损耗与电抗器半径有关,环流损耗与各层电流相关。系统仿真使用MATLAB2022a进行。
|
26天前
|
编解码 算法 数据安全/隐私保护
基于BP译码的LDPC误码率matlab仿真,分析不同码长,码率,迭代次数以及信道类型对译码性能的影响
本内容介绍基于MATLAB 2022a的低密度奇偶校验码(LDPC)仿真,展示了完整的无水印仿真结果。LDPC是一种逼近香农限的信道编码技术,广泛应用于现代通信系统。BP译码算法通过Tanner图上的消息传递实现高效译码。仿真程序涵盖了不同Eb/N0下的误码率计算,并分析了码长、码率、迭代次数和信道类型对译码性能的影响。核心代码实现了LDPC编码、BPSK调制、高斯信道传输及BP译码过程,最终绘制误码率曲线并保存数据。 字符数:239
72 5
|
27天前
|
机器学习/深度学习 人工智能 算法
基于GRNN广义回归网络和MFCC的语音情绪识别matlab仿真,对比SVM和KNN
该语音情绪识别算法基于MATLAB 2022a开发,可识别如悲伤等情绪,置信度高达0.9559。核心程序含中文注释及操作视频。算法采用MFCC特征提取与GRNN广义回归网络,通过预加重、分帧、加窗、FFT、梅尔滤波器组、对数运算和DCT等步骤处理语音信号,实现高效的情绪分类。
|
2月前
|
运维 算法
基于Lipschitz李式指数的随机信号特征识别和故障检测matlab仿真
本程序基于Lipschitz李式指数进行随机信号特征识别和故障检测。使用MATLAB2013B版本运行,核心功能包括计算Lipschitz指数、绘制指数曲线、检测故障信号并标记异常区域。Lipschitz指数能够反映信号的局部动态行为,适用于机械振动分析等领域的故障诊断。
|
1月前
|
算法 数据安全/隐私保护
数字通信中不同信道类型对通信系统性能影响matlab仿真分析,对比AWGN,BEC,BSC以及多径信道
本项目展示了数字通信系统中几种典型信道模型(AWGN、BEC、BSC及多径信道)的算法实现与分析。使用Matlab2022a开发,提供无水印运行效果预览图、部分核心代码及完整版带中文注释的源码和操作视频。通过数学公式深入解析各信道特性及其对系统性能的影响。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
258 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
153 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现

热门文章

最新文章