Flink之外部数据访问的异步 I/O

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
实时计算 Flink 版,5000CU*H 3个月
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
简介: 笔记

(1)对于异步 I/O 操作的需求


在与外部系统交互(用数据库中的数据扩充流数据)的时候,需要考虑与外部系统的通信延迟对整个流处理应用的影响。


简单地访问外部数据库的数据,比如使用 MapFunction,通常意味着同步交互: MapFunction 向数据库发送一个请求然后一直等待,直到收到响应。在许多情况下,等待占据了函数运行的大部分时间。


与数据库异步交互是指一个并行函数实例可以并发地处理多个请求和接收多个响应。这样,函数在等待的时间可以发送其他请求和接收其他响应。至少等待的时间可以被多个请求摊分。大多数情况下,异步交互可以大幅度提高流处理的吞吐量。

1.png


注意:仅仅提高 MapFunction 的并行度(parallelism)在有些情况下也可以提升吞吐量,但是这样做通常会导致非常高的资源消耗:更多的并行 MapFunction 实例意味着更多的 Task、更多的线程、更多的 Flink 内部网络连接、 更多的与数据库的网络连接、更多的缓冲和更多程序内部协调的开销。


(2)异步 I/O API


Flink 的异步 I/O API 允许用户在流处理中使用异步请求客户端。API 处理与数据流的集成,同时还能处理好顺序、事件时间和容错等。


在具备异步数据库客户端的基础上,实现数据流转换操作与数据库的异步 I/O 交互需要以下三部分:


实现分发请求的 AsyncFunction

获取数据库交互的结果并发送给 ResultFuture 的 回调 函数

将异步 I/O操作应用于 DataStream 作为 DataStream 的一次转换操作。

下面是基本的代码模板:

// 这个例子使用 Java 8 的 Future 接口(与 Flink 的 Future 相同)实现了异步请求和回调。
/**
 * 实现 'AsyncFunction' 用于发送请求和设置回调。
 */
class AsyncDatabaseRequest extends RichAsyncFunction<String, Tuple2<String, String>> {
    /** 能够利用回调函数并发发送请求的数据库客户端 */
    private transient DatabaseClient client;
    @Override
    public void open(Configuration parameters) throws Exception {
        client = new DatabaseClient(host, post, credentials);
    }
    @Override
    public void close() throws Exception {
        client.close();
    }
    @Override
    public void asyncInvoke(String key, final ResultFuture<Tuple2<String, String>> resultFuture) throws Exception {
        // 发送异步请求,接收 future 结果
        final Future<String> result = client.query(key);
        // 设置客户端完成请求后要执行的回调函数
        // 回调函数只是简单地把结果发给 future
        CompletableFuture.supplyAsync(new Supplier<String>() {
            @Override
            public String get() {
                try {
                    return result.get();
                } catch (InterruptedException | ExecutionException e) {
                    // 显示地处理异常。
                    return null;
                }
            }
        }).thenAccept( (String dbResult) -> {
            resultFuture.complete(Collections.singleton(new Tuple2<>(key, dbResult)));
        });
    }
}
// 创建初始 DataStream
DataStream<String> stream = ...;
// 应用异步 I/O 转换操作
DataStream<Tuple2<String, String>> resultStream =
    AsyncDataStream.unorderedWait(stream, new AsyncDatabaseRequest(), 1000, TimeUnit.MILLISECONDS, 100);

重要提示: 第一次调用 ResultFuture.complete 后 ResultFuture 就完成了。 后续的 complete 调用都将被忽略。


下面两个参数控制异步操作:


Timeout: 超时参数定义了异步请求发出多久后未得到响应即被认定为失败。 它可以防止一直等待得不到响应的请求。

Capacity: 容量参数定义了可以同时进行的异步请求数。 即使异步 I/O 通常带来更高的吞吐量,执行异步 I/O

操作的算子仍然可能成为流处理的瓶颈。 限制并发请求的数量可以确保算子不会持续累积待处理的请求进而造成积压,而是在容量耗尽时触发反压。

超时处理

当异步 I/O 请求超时的时候,默认会抛出异常并重启作业。 如果你想处理超时,可以重写 AsyncFunction#timeout 方法。


结果的顺序

AsyncFunction 发出的并发请求经常以不确定的顺序完成,这取决于请求得到响应的顺序。 Flink 提供两种模式控制结果记录以何种顺序发出。


无序模式: 异步请求一结束就立刻发出结果记录。 流中记录的顺序在经过异步 I/O 算子之后发生了改变。 当使用 处理时间

作为基本时间特征时,这个模式具有最低的延迟和最少的开销。 此模式使用 AsyncDataStream.unorderedWait(…)方法。

有序模式: 这种模式保持了流的顺序。发出结果记录的顺序与触发异步请求的顺序(记录输入算子的顺序)相同。为了实现这一点,算子将缓冲一个结果记录直到这条记录前面的所有记录都发出(或超时)。由于记录或者结果要在checkpoint 的状态中保存更长的时间,所以与无序模式相比,有序模式通常会带来一些额外的延迟和 checkpoint开销。此模式使用AsyncDataStream.orderedWait(…) 方法。

事件时间

当流处理应用使用事件时间时,异步 I/O 算子会正确处理 watermark。对于两种顺序模式,这意味着以下内容:


无序模式: Watermark 既不超前于记录也不落后于记录,即 watermark 建立了顺序的边界。 只有连续两个 watermark

之间的记录是无序发出的。 在一个 watermark 后面生成的记录只会在这个 watermark 发出以后才发出。 在一个

watermark 之前的所有输入的结果记录全部发出以后,才会发出这个 watermark。

这意味着存在 watermark 的情况下,无序模式 会引入一些与有序模式 相同的延迟和管理开销。开销大小取决于 watermark 的频率。


有序模式: 连续两个 watermark 之间的记录顺序也被保留了。开销与使用处理时间 相比,没有显著的差别。

请记住,摄入时间 是一种特殊的事件时间,它基于数据源的处理时间自动生成 watermark。


容错保证

异步 I/O 算子提供了完全的精确一次容错保证。它将在途的异步请求的记录保存在 checkpoint 中,在故障恢复时重新触发请求。


(3)代码实现


package com.aikfk.flink.dataStream.function;
import com.aikfk.flink.base.MySource;
import com.alibaba.druid.pool.DruidDataSource;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.AsyncDataStream;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.async.ResultFuture;
import org.apache.flink.streaming.api.functions.async.RichAsyncFunction;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.util.Collections;
import java.util.concurrent.CompletableFuture;
import java.util.concurrent.TimeUnit;
import java.util.function.Supplier;
public class AsynchronousFunction {
    public static void main(String[] args)throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        DataStream<String> dataStream = env.addSource(new MySource());
        DataStream<Tuple2<String,String>> async = AsyncDataStream.unorderedWait(dataStream ,
                new AsyncDatabaseRequest() ,
                10000,
                TimeUnit.MICROSECONDS ,
                100);
        async.print();
        env.execute("asyncForMysql");
    }
    static  class AsyncDatabaseRequest extends RichAsyncFunction<String,Tuple2<String,String>>{
        private DruidDataSource dataSource ;
        @Override
        public void open(Configuration parameters) throws Exception {
            super.open(parameters);
            dataSource = new DruidDataSource();
            dataSource.setDriverClassName("com.mysql.jdbc.Driver");
            dataSource.setUrl("jdbc:mysql://bigdata-pro-m03.kfk.com/db_novel?createDatabaseIfNotExist=true");
            dataSource.setUsername("root");
            dataSource.setPassword("123456");
        }
        @Override
        public void close() throws Exception {
            super.close();
            dataSource.close();
        }
        @Override
        public void asyncInvoke(String key_id, ResultFuture<Tuple2<String,String>> resultFuture) throws Exception {
            String chapter_name = queryFormMysql(key_id);
            CompletableFuture.supplyAsync(new Supplier<Tuple2<String,String>>() {
                @Override
                public Tuple2<String,String> get() {
                    return new Tuple2<>(key_id , chapter_name);
                }
            }).thenAccept(dbResult -> {
                resultFuture.complete(Collections.singleton(dbResult));
            });
        }
        private String queryFormMysql(String id) throws SQLException{
            String sql = "select chapter_name from novel_detail where id =? ";
            Connection connection = null ;
            PreparedStatement stmt = null ;
            ResultSet rs = null ;
            String result_name = null ;
            try{
                connection = dataSource.getConnection();
                stmt = connection.prepareStatement(sql);
                stmt.setString(1,id);
                rs = stmt.executeQuery() ;
                if (rs.next()){
                    result_name = rs.getString("chapter_name") ;
                }
            }catch (SQLException e){
                e.printStackTrace();
            }finally {
                if(rs != null){
                    rs.close();
                }
                if (stmt != null){
                    stmt.close();
                }
                if (connection != null){
                    connection.close();
                }
            }
            return result_name  ;
        }
    }
    static  class MySource implements SourceFunction<String> {
        @Override
        public void cancel() {
        }
        @Override
        public void run(SourceContext<String> ctx) throws Exception {
            String[] datas = {
                    "1",
                    "2",
                    "3"
            };
            for (int k = 0; k < datas.length; k++) {
                Thread.sleep(100);
                ctx.collect(datas[k]);
            }
        }
    }
}





相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
1月前
|
运维 数据处理 Apache
数据实时计算产品对比测评报告:阿里云实时计算Flink版
数据实时计算产品对比测评报告:阿里云实时计算Flink版
|
1月前
|
分布式计算 监控 大数据
大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu
大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu
58 1
|
1月前
|
消息中间件 Java Kafka
Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource
Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource
49 1
|
1月前
|
SQL 分布式计算 大数据
大数据-108 Flink 快速应用案例 重回Hello WordCount!方案1批数据 方案2流数据(一)
大数据-108 Flink 快速应用案例 重回Hello WordCount!方案1批数据 方案2流数据(一)
48 0
|
1月前
|
大数据 流计算
大数据-108 Flink 快速应用案例 重回Hello WordCount!方案1批数据 方案2流数据(二)
大数据-108 Flink 快速应用案例 重回Hello WordCount!方案1批数据 方案2流数据(二)
46 0
|
2月前
|
SQL 安全 数据处理
揭秘数据脱敏神器:Flink SQL的神秘力量,守护你的数据宝藏!
【9月更文挑战第7天】在大数据时代,数据管理和处理尤为重要,尤其在保障数据安全与隐私方面。本文探讨如何利用Flink SQL实现数据脱敏,为实时数据处理提供有效的隐私保护方案。数据脱敏涉及在处理、存储或传输前对敏感数据进行加密、遮蔽或替换,以遵守数据保护法规(如GDPR)。Flink SQL通过内置函数和表达式支持这一过程。
84 2
|
3月前
|
消息中间件 Kafka 数据处理
实时计算 Flink版产品使用问题之如何处理数据并记录每条数据的变更
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
3月前
|
消息中间件 存储 关系型数据库
实时计算 Flink版产品使用问题之同步时,上游批量删除大量数据(如20万条),如何提高删除效率
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
3月前
|
消息中间件 存储 关系型数据库
实时计算 Flink版产品使用问题之如何使用Kafka Connector将数据写入到Kafka
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

热门文章

最新文章

下一篇
无影云桌面