经典分类网络结构(二)

简介: 经典分类网络结构(二)

3.3.4 Inception 结构



首先我们要说一下在Network in Network中引入的1 x 1卷积结构的相关作用


3.3.4.1MLP卷积(1 x 1卷积)


image.png


目的:提出了一种新的深度网络结构,称为“网络中的网络”(NIN),增强接受域内局部贴片的模型判别能力。


  • 做法
  • 对于传统线性卷积核:采用线性滤波器,然后采用非线性激活。
  • 提出MLP卷积取代传统线性卷积核


  • 作用或优点:


  • 1、多个1x1的卷积核级联加上配合激活函数,将feature map由多通道的线性组合变为非线性组合(信息整合),提高特征抽象能力(Multilayer Perceptron,缩写MLP,就是一个多层神经网络)
  • 2、1x1的卷积核操作还可以实现卷积核通道数的降维和升维,实现参数的减小化


3.3.4.2 1 x 1卷积介绍


image.png


从图中,看到1 x 1卷积的过程,那么这里先假设只有3个1x1Filter,那么最终结果还是56x56x3。但是每一个FIlter的三个参数的作用


看作是对三个通道进行了线性组合。


  • 我们甚至可以把这几个FIlter可以看成就是一个简单的神经元结构,每个神经元参数数量与前面的通道数量相等。


  • 通常在卷积之后会加入非线性激活函数,在这里之后加入激活函数,就可以理解成一个简单的MLP网络了。


image.png


3.3.4.3 通道数变化


那么对于1x1网络对通道数的变化,其实并不是最重要的特点,因为毕竟3 x 3,5 x 5都可以带来通道数的变化,


而1x1卷积的参数并不多,我们拿下面的例子来看。


image.png


  • 保持通道数不变
  • 提升通道数
  • 减少通道数


3.3.4.4 Inception层


这个结构其实还有名字叫盗梦空间结构。


  • 目的:
  • 代替人手工去确定到底使用1x1,3x3,5x5还是是否需要max_pooling层,由网络自动去寻找适合的结构。并且节省计算。


image.png


特点


  • 是每一个卷积/池化最终结果的长、宽大小一致
  • 特殊的池化层,需要增加padding,步长为1来使得输出大小一致,并且选择32的通道数
  • 最终结果28 x 28 x 256


  • 使用更少的参数,达到跟AlexNet或者VGG同样类似的输出结果


3.3.4.5 Inception改进


改进目的:减少计算,如5 x 5卷积那的运算量


  • 上面的参数:5 x 5 x 32 x 192 =153600
  • 下面的参数:192 x 16 + 5 x 5 x 16 x 32 = 3072 + 12800 = 15872


所以上面的结构会需要大量的计算,我们把这种改进的结构称之为网络的"瓶颈",网络缩小后扩大。


那么这样改变会影响网络的性能和效果吗?


GoogleNet就是如此,获得了非常好的效果。所以合理的设计网络当中的Inception结构能够减少计算,实现更好的效果。


3.3.4.6 GoogleNet结构(了解)


其中包含了多个Inception结构。


20200712114057135.png


完整结构:


20200712114124406.png

3.3.5 卷积神经网络学习特征可视化



我们肯定会有疑问真个深度的卷积网络到底在学习什么?可以将网络学习过程中产生的特征图可视化出来,并且对比原图来看看每一层都干了什么。


可视化案例使用的网络


image.png


  • 可视化结果


image.pngimage.pngimage.pngimage.pngimage.png


  • layer1,layer2学习到的特征基本是颜色、边缘等低层特征
  • layer3学习到的特征,一些纹理特征,如网格纹理
  • layer4学习到的特征会稍微复杂些,比如狗的头部形状
  • layer5学习到的是完整一些的,比如关键性的区分特征


3.3.6 总结



  • 掌握LeNet-5 结构计算
  • 了解卷积常见网络结构
  • 掌握1x1卷积结构作用
  • 掌握Inception结构作用


目录
相关文章
|
3月前
|
网络协议
计算机网络的分类
【10月更文挑战第11天】 计算机网络可按覆盖范围(局域网、城域网、广域网)、传输技术(有线、无线)、拓扑结构(星型、总线型、环型、网状型)、使用者(公用、专用)、交换方式(电路交换、分组交换)和服务类型(面向连接、无连接)等多种方式进行分类,每种分类方式揭示了网络的不同特性和应用场景。
|
2月前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
74 8
|
1月前
|
机器学习/深度学习 Serverless 索引
分类网络中one-hot编码的作用
在分类任务中,使用神经网络时,通常需要将类别标签转换为一种合适的输入格式。这时候,one-hot编码(one-hot encoding)是一种常见且有效的方法。one-hot编码将类别标签表示为向量形式,其中只有一个元素为1,其他元素为0。
35 2
|
2月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
67 3
|
3月前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLO11改进 - C3k2融合】C3k2融合YOLO-MS的MSBlock : 分层特征融合策略,轻量化网络结构
【YOLO11改进 - C3k2融合】C3k2融合YOLO-MS的MSBlock : 分层特征融合策略,轻量化网络结构
|
3月前
|
机器学习/深度学习 Serverless 索引
分类网络中one-hot的作用
在分类任务中,使用神经网络时,通常需要将类别标签转换为一种合适的输入格式。这时候,one-hot编码(one-hot encoding)是一种常见且有效的方法。one-hot编码将类别标签表示为向量形式,其中只有一个元素为1,其他元素为0。
80 3
|
4月前
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
127 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
3月前
|
机器学习/深度学习 数据采集 算法
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
这篇博客文章介绍了如何使用包含多个网络和多种训练策略的框架来完成多目标分类任务,涵盖了从数据准备到训练、测试和部署的完整流程,并提供了相关代码和配置文件。
76 0
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
深度学习入门案例:运用神经网络实现价格分类
深度学习入门案例:运用神经网络实现价格分类
|
3月前
|
边缘计算 自动驾驶 5G
5G的网络拓扑结构典型模式
5G的网络拓扑结构典型模式
394 4

热门文章

最新文章