Python - pydantic(1) 入门介绍与 Models 的简单使用

简介: Python - pydantic(1) 入门介绍与 Models 的简单使用

前言


为啥要学这个,因为 FastAPI 是基于它进行开发的,而且是个不错的框架,所以有必要深入学习

 

前置学习

Python 类型提示:https://www.cnblogs.com/poloyy/p/15145380.html

typing 模块:https://www.cnblogs.com/poloyy/p/15150315.html

 

Pydantic 介绍


  • 使用 python 类型注释来进行数据校验和 settings 管理
  • pydantic 可以在代码运行时强制执行类型提示,并在数据校验无效时提供友好的错误提示
  • 定义数据应该如何在规范的 python 代码中保存,然后通过 Python 验证它

 

Pydantic 安装


pip install pydantic

 

测试 pydantic 是否已编译

import pydantic
print('compiled:', pydantic.compiled)
# 输出结果
compiled: True


Pydantic 注意事项


  • pydantic 是一个解析库,而不是一个验证库
  • 验证是达到目的一种手段,构建符合所提供的类型和约束的模型
  • 简单来说:pydantic 保证输出模型的类型和约束,而不是输入数据

 

Models


简介

  • 在 pydantic 中定义对象的主要方法是通过模型(模型是从 BaseModel 继承的类)
  • 所有基于 pydantic 的数据类型本质上都是一个 BaseModel
  • 可以将模型视为强类型语言中的类型(比如 Java)
  • 不受信任的数据可以传递给模型,经过解析和验证后,pydantic 保证生成的模型实例的字段将符合定义的字段类型(实例字段类型符合类定义的字段类型)

 

基础模型使用

from pydantic import BaseModel


class User(BaseModel):

   id: int

   name = "小菠萝测试笔记"

  • User 就是一个模型(Models),有两个字段(属性)
  • id,整数 int 类型,是必传的
  • name,字符串 string 类型,不是必传,有默认值

 

为什么能知道 name 是 string 类型?

因为默认值是 string 类型,因此不需要类型提示( name : string

注意:当某些字段没有类型提示时,需要注意有关字段顺序的警告

 

声明一个有效实例

user = User(id='123')

  • user 是 User 模型的一个实例对象,就叫模型实例对象吧
  • 对象的初始化会执行所有解析和验证,如果没有抛出 ValidationError,证明生成的模型实例是有效的

 

访问模型实例对象的属性

user = User(id='123')
print(user.id, type(user.id))
print(user.name, type(user.name))
# 输出结果
123 <class 'int'>
小菠萝测试笔记 <class 'str'>


  • id 属性传的是字符串 '123',它会根据模型字段类型进行转换为 int
  • name 属性取了默认值

 

__fields_set__

该变量返回用户初始化对象时提供了什么字段

# __fields_set__
user = User(id='123')
print(user.__fields_set__ == {'id'})
print(user.__fields_set__ == {'name'})
user = User(id='123', name="test")
print(user.__fields_set__ == {'id', 'name'})
print(user.__fields_set__ == {'id'})
# 输出结果
True
False
True
False


dict()

可以提供字段的字典对象

# dict()
user = User(id='123')
print(user.dict())
print(dict(user))
# 输出结果
{'id': 123, 'name': '小菠萝测试笔记'}
{'id': 123, 'name': '小菠萝测试笔记'}


修改模型实例对象的属性

# 修改模型实例属性值
user = User(id='123')
user.id = 321
print(user.id)
# 输出结果
321


BaseModels 属性


其实就是 BaseModels 有什么自带的方法、属性

 

dict()

返回模型字段和值,字典格式

user = User(id='123', name="test")

print(user.dict(), type(user.dict()))



# 输出结果

{'id': 123, 'name': 'test'} <class'dict'>

 

json()

返回模型字段和值,json 字符串格式

user = User(id='123', name="test")

print(user.json(), type(user.json()))


# 输出结果

{"id": 123, "name": "test"} <class'str'>

 

schema()

以 JSON Schema 形式返回模型,字典格式

user = User(id='123', name="test")
print(user.schema(), type(user.schema()))
# 输出结果
{
    "title": "User",
    "type": "object",
    "properties": {
        "id": {
            "title": "Id",
            "type": "integer"
        },
        "name": {
            "title": "Name",
            "default": "小菠萝测试笔记",
            "type": "string"
        }
    },
    "required": [
        "id"
    ]
}
<class 'dict'>


schema_json()

以 JSON Schema 形式返回模型,json 字符串格式

user = User(id='123', name="test")
print(user.schema_json(), type(user.schema_json()))
# 输出结果
{
    "title": "User",
    "type": "object",
    "properties": {
        "id": {
            "title": "Id",
            "type": "integer"
        },
        "name": {
            "title": "Name",
            "default": "小菠萝测试笔记",
            "type": "string"
        }
    },
    "required": [
        "id"
    ]
}
<class 'str'>


copy()

浅拷贝模型对象

 

相关文章
|
2月前
|
存储 数据挖掘 开发者
Python编程入门:从零到英雄
在这篇文章中,我们将一起踏上Python编程的奇幻之旅。无论你是编程新手,还是希望拓展技能的开发者,本教程都将为你提供一条清晰的道路,引导你从基础语法走向实际应用。通过精心设计的代码示例和练习,你将学会如何用Python解决实际问题,并准备好迎接更复杂的编程挑战。让我们一起探索这个强大的语言,开启你的编程生涯吧!
|
1月前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
2月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
【10月更文挑战第42天】本文是一篇技术性文章,旨在为初学者提供一份关于如何使用Python进行数据分析的入门指南。我们将从安装必要的工具开始,然后逐步介绍如何导入数据、处理数据、进行数据可视化以及建立预测模型。本文的目标是帮助读者理解数据分析的基本步骤和方法,并通过实际的代码示例来加深理解。
71 3
|
3天前
|
人工智能 编译器 Python
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
|
1月前
|
IDE 程序员 开发工具
Python编程入门:打造你的第一个程序
迈出编程的第一步,就像在未知的海洋中航行。本文是你启航的指南针,带你了解Python这门语言的魅力所在,并手把手教你构建第一个属于自己的程序。从安装环境到编写代码,我们将一步步走过这段旅程。准备好了吗?让我们开始吧!
|
1月前
|
测试技术 开发者 Python
探索Python中的装饰器:从入门到实践
装饰器,在Python中是一块强大的语法糖,它允许我们在不修改原函数代码的情况下增加额外的功能。本文将通过简单易懂的语言和实例,带你一步步了解装饰器的基本概念、使用方法以及如何自定义装饰器。我们还将探讨装饰器在实战中的应用,让你能够在实际编程中灵活运用这一技术。
39 7
|
1月前
|
开发者 Python
Python中的装饰器:从入门到实践
本文将深入探讨Python的装饰器,这一强大工具允许开发者在不修改现有函数代码的情况下增加额外的功能。我们将通过实例学习如何创建和应用装饰器,并探索它们背后的原理和高级用法。
44 5
|
1月前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
77 3
|
1月前
|
Python
Python编程入门:从零开始的代码旅程
本文是一篇针对Python编程初学者的入门指南,将介绍Python的基本语法、数据类型、控制结构以及函数等概念。文章旨在帮助读者快速掌握Python编程的基础知识,并能够编写简单的Python程序。通过本文的学习,读者将能够理解Python代码的基本结构和逻辑,为进一步深入学习打下坚实的基础。