2022年必须要了解的20个开源NLP 库(二)

本文涉及的产品
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
简介: 2022年必须要了解的20个开源NLP 库(二)

13. Snips NLU



3.6k GitHub stars.


注意:该库已经2年没有更新了


Snips NLU 是一个可以从用自然语言编写的句子中提取结构化信息的 Python 库。每当用户使用自然语言与人工智能交互时,他们的文字都需要被翻译成机器可读的形式(向量)。Snips NLU 的 NLU(自然语言理解)引擎首先检测用户的意图是什么(也就是意图),然后提取查询的参数(称为slots)。


14. NLP Architect



2.8k GitHub stars.


NLP Architect 是一个用于探索用于优化自然语言处理和自然语言理解神经网络的最先进的深度学习拓扑和技术的Python 库。它允许在应用程序中轻松快速地集成 NLP 模型,并展示优化的模型。


15. PyTorch-NLP



2k GitHub stars.


PyTorch-NLP 扩展了 PyTorch并提供基本的文本数据处理功能。


16. Polyglot



1.9k GitHub stars.


Polyglot 是一个支持大量多语言应用程序的自然语言管道:标记化(165 种语言)、语言检测(196 种语言)、命名实体识别(40 种语言)、部分语音标记(16 种语言)、情感分析(136 种语言)、Word 嵌入(137 种语言)、形态分析(135 种语言)和音译(69 种语言)。


但是该库的最新更新时间是3年前。


17. TextAttack



1.8k GitHub stars.


TextAttack 是一个用于 NLP 中的对抗性攻击、数据增强和模型训练 的Python 框架。


18.Word Forms



513 GitHub stars.


Word forms可以准确地生成一个英语单词的所有可能形式。它可以连接不同的词性,例如名词与形容词、形容词与副词、名词与动词等。


19. Rosetta



420 GitHub stars.


Rosetta 是一个基于 TensorFlow 的隐私保护框架。它集成了主流的隐私保护计算技术,包括密码学、联邦学习和可信执行环境。Rosetta 重用了 TensorFlow 的 API,只需极少的代码更改,就可以将传统的 TensorFlow 代码转换为隐私保护的方式运行。


必备基础库


这里列出了一些并非特定于 NLP 但仍然经常用于 NLP 项目的数据科学库。


20.Scikit-learn



48.6k GitHub stars.


Scikit-learn(也称为 sklearn)是 Python 编程语言的免费软件机器学习库。它具有各种分类、回归和聚类算法,包括支持向量机、随机森林、梯度提升、k-means 和 DBSCAN,是建立在 Python 数值和科学库 NumPy 和 SciPy 之上的。


21.Pandas



32.4k GitHub stars.


Pandas 是一个提供了操作表格数据的Python 包。它已经成为在 Python 中进行实际的、真实的数据分析的基础模块。它可以被称作最强大、最灵活的开源数据分析/操作工具。


相关文章
|
21天前
|
自然语言处理 Python
如何使用自然语言处理库`nltk`进行文本的基本处理
这段Python代码展示了如何使用`nltk`库进行文本的基本处理,包括分词和词频统计。首先需要安装`nltk`库,然后通过`word_tokenize`方法将文本拆分为单词,并使用`FreqDist`类统计每个单词的出现频率。运行代码后,会输出每个词的出现次数,帮助理解文本的结构和常用词。
|
3月前
|
机器学习/深度学习 自然语言处理 PyTorch
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案--6 提分方案
在讯飞英文学术论文分类挑战赛中的提分技巧和实现方法,包括数据增强、投票融合、伪标签等策略,以及加快模型训练的技巧,如混合精度训练和使用AdamW优化器等。
42 0
|
3月前
|
数据采集 机器学习/深度学习 存储
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案–5 Bert 方案
在讯飞英文学术论文分类挑战赛中使用BERT模型进行文本分类的方法,包括数据预处理、模型微调技巧、长文本处理策略以及通过不同模型和数据增强技术提高准确率的过程。
40 0
|
3月前
|
机器学习/深度学习 数据采集 自然语言处理
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案–4 机器学习LGB 方案
在讯飞英文学术论文分类挑战赛中使用LightGBM模型进行文本分类的方案,包括数据预处理、特征提取、模型训练及多折交叉验证等步骤,并提供了相关的代码实现。
49 0
|
3月前
|
数据采集 自然语言处理 机器学习/深度学习
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案–3 TextCNN Fasttext 方案
讯飞英文学术论文分类挑战赛中使用TextCNN和FastText模型进行文本分类的方案,包括数据预处理、模型训练和对抗训练等步骤,并分享了模型调优的经验。
37 0
|
3月前
|
机器学习/深度学习 自然语言处理 数据挖掘
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案--2 数据分析
讯飞英文学术论文分类挑战赛数据集的分析,包括数据加载、缺失值检查、标签分布、文本长度统计等内容,并总结了数据的基本情况。
22 0
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术在自然语言处理中的应用与挑战
【10月更文挑战第3天】本文将探讨AI技术在自然语言处理(NLP)领域的应用及其面临的挑战。我们将分析NLP的基本原理,介绍AI技术如何推动NLP的发展,并讨论当前的挑战和未来的趋势。通过本文,读者将了解AI技术在NLP中的重要性,以及如何利用这些技术解决实际问题。
|
2月前
|
机器学习/深度学习 数据采集 自然语言处理
深度学习在自然语言处理中的应用与挑战
本文探讨了深度学习技术在自然语言处理(NLP)领域的应用,包括机器翻译、情感分析和文本生成等方面。同时,讨论了数据质量、模型复杂性和伦理问题等挑战,并提出了未来的研究方向和解决方案。通过综合分析,本文旨在为NLP领域的研究人员和从业者提供有价值的参考。
|
1月前
|
自然语言处理 算法 Python
自然语言处理(NLP)在文本分析中的应用:从「被动收集」到「主动分析」
【10月更文挑战第9天】自然语言处理(NLP)在文本分析中的应用:从「被动收集」到「主动分析」
48 4
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI在自然语言处理中的创新应用
【10月更文挑战第7天】本文将深入探讨人工智能在自然语言处理领域的最新进展,揭示AI技术如何改变我们与机器的互动方式,并展示通过实际代码示例实现的具体应用。
38 1

热门文章

最新文章

下一篇
无影云桌面