2022年必须要了解的20个开源NLP 库(一)

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
简介: 2022年必须要了解的20个开源NLP 库(一)

在本文中,我列出了当今最常用的 NLP 库,并对其进行简要说明。它们在不同的用例中都有特定的优势和劣势,因此它们都可以作为专门从事 NLP 的优秀数据科学家备选方案。每个库的描述都是从它们的 GitHub 中提取的。


b8ff7da40b823bdf1b403592b0869243.png


NLP库



以下是顶级库的列表,排序方式是在GitHub上的星数倒序。


1.Hugging Face Transformers



57.1k GitHub stars.


Transformers 提供了数千个预训练模型来执行不同形式的任务,例如文本、视觉和音频。这些模型可应用于文本(文本分类、信息提取、问答、摘要、翻译、文本生成,支持超过 100 种语言)、图像(图像分类、对象检测和分割)和音频(语音识别和音频分类 )。Transformer 模型还可以结合多种模式执行任务,例如表格问答、OCR、从扫描文档中提取信息、视频分类和视觉问答。


2. spaCy



22.2k GitHub stars.


spaCy是 Python 和 Cython 中用于自然语言处理的免费开源库。它从一开始就设计用于生产环境。spaCy 带有预训练的管道,目前支持 60 多种语言的标记化和训练。它具有最先进的神经网络模型,可以用于标记、解析、命名实体识别、文本分类、并且使用 BERT 等预训练Transformers进行多任务学习,可以对模型进行 打包、部署和工作,方便生产环境的部署。spaCy 是商业开源软件,在 MIT 许可下发布。


3.FairSeq



15.1k GitHub stars.


Fairseq 是一个序列建模工具包,允许研究人员和开发人员为翻译、摘要、语言建模和其他文本生成任务训练自定义模型。它提供了各种序列建模论文的参考实现。


4.Gensim



12.8k GitHub stars.


Gensim 是一个 Python 库,用于主题建模、文档索引和大型语料库的相似性检索。目标受众是 NLP 和信息检索 (IR) 社区。Gensim 具有流行算法的高效多核实现,包括但不限于Latent Semantic Analysis (LSA/LSI/SVD)、Latent Dirichlet Allocation (LDA)、Random Projections (RP)、Hierarchical Dirichlet Process(HDP) 或 word2vec 深度学习等。


5.Flair



11.2k GitHub stars.


Flair 是一个强大的 NLP 库。Flair 的目标是将最先进的 NLP 模型应用于文本中,例如命名实体识别 (NER)、词性标注 (PoS)、对生物医学数据的特殊支持、语义消歧和分类。Flair 具有简单的界面,允许使用和组合不同的单词和文档嵌入,包括 Flair 嵌入、BERT 嵌入和 ELMo 嵌入。该框架直接构建在 PyTorch 上,可以轻松地训练自己的模型并使用 Flair 嵌入和类库来试验新方法。


6. AllenNLP



10.8k GitHub stars.


AllenNLP是基于 PyTorch 构建的 NLP 研究库,使用开源协议为Apache 2.0 ,它包含用于在各种语言任务上开发最先进的深度学习模型并提供了广泛的现有模型实现集合,这些实现都是按照高标准设计,为进一步研究奠定了良好的基础。AllenNLP 提供了一种高级配置语言来实现 NLP 中的许多常见方法,例如transformer、多任务训练、视觉+语言任务、公平性和可解释性。这允许纯粹通过配置对广泛的任务进行实验,因此使用者可以专注于解决研究中的重要问题。


7. NLTK



10.4k GitHub stars.


NLTK — Natural Language Toolkit — 是一套支持自然语言处理研究和开发的开源 Python 包、数据集和教程的集合。它为超过 50 个语料库和词汇资源(如 WordNet)提供易于使用的接口,以及一套用于分类、标记化、词干提取、标记、解析和语义推理的文本处理库。


8. CoreNLP



8.3k GitHub stars.


斯坦福 CoreNLP 提供了一组用 Java 编写的自然语言分析工具。它可以接收原始的人类语言文本输入,并给出单词的基本形式、词性、公司名称、人名等,规范化和解释日期、时间和数字量,标记句子的结构 在短语或单词依赖方面,并指出哪些名词短语指的是相同的实体。


9. Pattern



8.1k GitHub stars.


注意:该库已经2年没有更新了


Pattern 是 Python 的web的挖掘工具包,它包含了:网络服务(谷歌、推特、维基百科)、网络爬虫和 HTML DOM 解析器。它有几个自然语言处理模型:词性标注器、n-gram 搜索、情感分析和 WordNet。它实现了机器学习模型:向量空间模型、聚类、分类(KNN、SVM、感知器)。模式也可用于网络分析:图形中心性和可视化。


10. TextBlob



8k GitHub stars.


TextBlob 是一个用于处理文本数据的 Python 库。它提供了一个简单的 API,用于深入研究常见的自然语言处理任务,例如词性标注、名词短语提取、情感分析、分类、翻译等。TextBlob 站在 NLTK 和 Pattern 的基础上制作,并且可以很好地与两者配合使用。


11. Hugging Face Tokenizers



5.2k GitHub stars.


该库提供了当今最常用的标记器的实现,重点是性能和通用性。


12.Haystack



3.8k GitHub stars.


Haystack 是一个端到端框架,能够为不同的搜索用例构建功能强大且可用于生产的管道。无论要执行问答还是语义文档搜索,都可以使用 Haystack 中最先进的 NLP 模型来提供独特的搜索体验并为用户提供使用自然语言进行查询的功能。Haystack 以模块化方式构建,因此可以结合其他开源项目(如 Huggingface 的 Transformers、Elasticsearch 或 Milvus)。



相关文章
|
24天前
|
自然语言处理 Python
如何使用自然语言处理库`nltk`进行文本的基本处理
这段Python代码展示了如何使用`nltk`库进行文本的基本处理,包括分词和词频统计。首先需要安装`nltk`库,然后通过`word_tokenize`方法将文本拆分为单词,并使用`FreqDist`类统计每个单词的出现频率。运行代码后,会输出每个词的出现次数,帮助理解文本的结构和常用词。
|
3月前
|
机器学习/深度学习 自然语言处理 PyTorch
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案--6 提分方案
在讯飞英文学术论文分类挑战赛中的提分技巧和实现方法,包括数据增强、投票融合、伪标签等策略,以及加快模型训练的技巧,如混合精度训练和使用AdamW优化器等。
43 0
|
3月前
|
数据采集 机器学习/深度学习 存储
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案–5 Bert 方案
在讯飞英文学术论文分类挑战赛中使用BERT模型进行文本分类的方法,包括数据预处理、模型微调技巧、长文本处理策略以及通过不同模型和数据增强技术提高准确率的过程。
40 0
|
3月前
|
机器学习/深度学习 数据采集 自然语言处理
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案–4 机器学习LGB 方案
在讯飞英文学术论文分类挑战赛中使用LightGBM模型进行文本分类的方案,包括数据预处理、特征提取、模型训练及多折交叉验证等步骤,并提供了相关的代码实现。
49 0
|
3月前
|
数据采集 自然语言处理 机器学习/深度学习
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案–3 TextCNN Fasttext 方案
讯飞英文学术论文分类挑战赛中使用TextCNN和FastText模型进行文本分类的方案,包括数据预处理、模型训练和对抗训练等步骤,并分享了模型调优的经验。
37 0
|
3月前
|
机器学习/深度学习 自然语言处理 数据挖掘
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案--2 数据分析
讯飞英文学术论文分类挑战赛数据集的分析,包括数据加载、缺失值检查、标签分布、文本长度统计等内容,并总结了数据的基本情况。
22 0
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术在自然语言处理中的应用与挑战
【10月更文挑战第3天】本文将探讨AI技术在自然语言处理(NLP)领域的应用及其面临的挑战。我们将分析NLP的基本原理,介绍AI技术如何推动NLP的发展,并讨论当前的挑战和未来的趋势。通过本文,读者将了解AI技术在NLP中的重要性,以及如何利用这些技术解决实际问题。
|
2月前
|
机器学习/深度学习 数据采集 自然语言处理
深度学习在自然语言处理中的应用与挑战
本文探讨了深度学习技术在自然语言处理(NLP)领域的应用,包括机器翻译、情感分析和文本生成等方面。同时,讨论了数据质量、模型复杂性和伦理问题等挑战,并提出了未来的研究方向和解决方案。通过综合分析,本文旨在为NLP领域的研究人员和从业者提供有价值的参考。
|
1月前
|
自然语言处理 算法 Python
自然语言处理(NLP)在文本分析中的应用:从「被动收集」到「主动分析」
【10月更文挑战第9天】自然语言处理(NLP)在文本分析中的应用:从「被动收集」到「主动分析」
49 4
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI在自然语言处理中的创新应用
【10月更文挑战第7天】本文将深入探讨人工智能在自然语言处理领域的最新进展,揭示AI技术如何改变我们与机器的互动方式,并展示通过实际代码示例实现的具体应用。
39 1
下一篇
无影云桌面