2.Audio
第二类是音频,有1篇论文,wav2vec 2.0
1. wav2vec 2.0:
A Framework for Self-Supervised Learning of Speech Representations. Authors:Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli. paper code
3.Videos and Multimodal
第三类是视频和多模态,主要包含ICLR2021和NIPS2020的论文,包含少量CVPR2020,有12篇论文的实现。
1. Time-Contrastive Networks: Self-Supervised Learning from Video.
Authors: Pierre Sermanet; Corey Lynch; Yevgen Chebotar; Jasmine Hsu; Eric Jang; Stefan Schaal; Sergey Levine. paper
2. Contrastive Multiview Coding.
Authors:Yonglong Tian, Dilip Krishnan, Phillip Isola. paper code
3. Learning Video Representations using Contrastive Bidirectional Transformer.
Authors:Chen Sun, Fabien Baradel, Kevin Murphy, Cordelia Schmid. paper
4. End-to-End Learning of Visual Representations from Uncurated Instructional Videos.CVPR2020.
Authors:Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, Ivan Laptev, Josef Sivic, Andrew Zisserman. paper code
5. Multi-modal Self-Supervision from Generalized Data Transformations.
Authors:Mandela Patrick, Yuki M. Asano, Polina Kuznetsova, Ruth Fong, João F. Henriques, Geoffrey Zweig, Andrea Vedaldi. paper
6. Support-set bottlenecks for video-text representation learning. ICLR2021.
Authors:Mandela Patrick, Po-Yao Huang, Yuki Asano, Florian Metze, Alexander Hauptmann, João Henriques, Andrea Vedaldi. paper
7. Contrastive Learning of Medical Visual Representations from Paired Images and Text. ICLR2021.
Authors:Yuhao Zhang, Hang Jiang, Yasuhide Miura, Christopher D. Manning, Curtis P. Langlotz. paper
8. AVLnet: Learning Audio-Visual Language Representations from Instructional Videos.
Authors:Andrew Rouditchenko, Angie Boggust, David Harwath, Brian Chen, Dhiraj Joshi, Samuel Thomas, Kartik Audhkhasi, Hilde Kuehne, Rameswar Panda, Rogerio Feris, Brian Kingsbury, Michael Picheny, Antonio Torralba, James Glass. paper
9. Self-Supervised MultiModal Versatile Networks. NIPS2020.
Authors:Jean-Baptiste Alayrac, Adrià Recasens, Rosalia Schneider, Relja Arandjelović, Jason Ramapuram, Jeffrey De Fauw, Lucas Smaira, Sander Dieleman, Andrew Zisserman. paper
10. Memory-augmented Dense Predictive Coding for Video Representation Learning.
Authors:Tengda Han, Weidi Xie, Andrew Zisserman. paper code
11. Spatiotemporal Contrastive Video Representation Learning.
Authors:Rui Qian, Tianjian Meng, Boqing Gong, Ming-Hsuan Yang, Huisheng Wang, Serge Belongie, Yin Cui. paper code
12. Self-supervised Co-training for Video Representation Learning. NIPS2020.
Authors:Tengda Han, Weidi Xie, Andrew Zisserman. paper
4.NLP
第四类是自然语言处理,主要包含ICLR2021和NAACL2021的论文,有14项研究的实现。
1. [CALM] Pre-training Text-to-Text Transformers for Concept-centric Common Sense. ICLR2021. Authors:Wangchunshu Zhou, Dong-Ho Lee, Ravi Kiran Selvam, Seyeon Lee, Xiang Ren. papercode
2. Residual Energy-Based Models for Text Generation. ICLR2021.
Authors:Yuntian Deng, Anton Bakhtin, Myle Ott, Arthur Szlam, Marc’Aurelio Ranzato. paper
3. Contrastive Learning with Adversarial Perturbations for Conditional Text Generation. ICLR2021.
Authors:Seanie Lee, Dong Bok Lee, Sung Ju Hwang. paper
4. [CoDA] CoDA: Contrast-enhanced and Diversity-promoting Data Augmentation for Natural Language Understanding. ICLR2021.
Authors:Yanru Qu, Dinghan Shen, Yelong Shen, Sandra Sajeev, Jiawei Han, Weizhu Chen. paper
5. [FairFil] FairFil: Contrastive Neural Debiasing Method for Pretrained Text Encoders. ICLR2021.
Authors:Pengyu Cheng, Weituo Hao, Siyang Yuan, Shijing Si, Lawrence Carin. paper
6. Towards Robust and Efficient Contrastive Textual Representation Learning. ICLR2021.
Authors:Liqun Chen, Yizhe Zhang, Dianqi Li, Chenyang Tao, Dong Wang, Lawrence Carin. paper
7. Self-supervised Contrastive Zero to Few-shot Learning from Small, Long-tailed Text data. ICLR2021.
Authors:Nils Rethmeier, Isabelle Augenstein. paper
8. Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval. ICLR2021.
Authors:Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett, Junaid Ahmed, Arnold Overwijk. paper
9. Self-Supervised Contrastive Learning for Efficient User Satisfaction Prediction in Conversational Agents. NAACL2021.
Authors:Mohammad Kachuee, Hao Yuan, Young-Bum Kim, Sungjin Lee. paper
10. SOrT-ing VQA Models : Contrastive Gradient Learning for Improved Consistency. NAACL2021.
Authors:Sameer Dharur, Purva Tendulkar, Dhruv Batra, Devi Parikh, Ramprasaath R. Selvaraju. paper
11. Supporting Clustering with Contrastive Learning. NAACL2021.
Authors:Dejiao Zhang, Feng Nan, Xiaokai Wei, Shangwen Li, Henghui Zhu, Kathleen McKeown, Ramesh Nallapati, Andrew Arnold, Bing Xiang. paper
12. Understanding Hard Negatives in Noise Contrastive Estimation. NAACL2021.
Authors:Wenzheng Zhang, Karl Stratos. paper
13. Contextualized and Generalized Sentence Representations by Contrastive Self-Supervised Learning: A Case Study on Discourse Relation Analysis. NAACL2021. Authors:Hirokazu Kiyomaru, Sadao Kurohashi. paper
14. Fine-Tuning Pre-trained Language Model with Weak Supervision: A Contrastive-Regularized Self-Training Approach. NAACL2021.
Authors:Yue Yu, Simiao Zuo, Haoming Jiang, Wendi Ren, Tuo Zhao, Chao Zhang. paper
5.Language Contrastive Learning
第五类是语言模型,在这个方向上有5篇论文。
1. Distributed Representations of Words and Phrases and their Compositionality. 2013NIPS.
Authors:Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean. Paper
2. An efficient framework for learning sentence representations.
Authors:Lajanugen Logeswaran, Honglak Lee. Paper
3. XLNet: Generalized Autoregressive Pretraining for Language Understanding.
Authors:Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le. Paper
4. A Mutual Information Maximization Perspective of Language Representation Learning.
Authors:Lingpeng Kong, Cyprien de Masson d’Autume, Wang Ling, Lei Yu, Zihang Dai, Dani Yogatama. Paper
5. InfoXLM: An Information-Theoretic Framework for Cross-Lingual Language Model Pre-Training.
Authors:Zewen Chi, Li Dong, Furu Wei, Nan Yang, Saksham Singhal, Wenhui Wang, Xia Song, Xian-Ling Mao, Heyan Huang, Ming Zhou. Paper
6.Graph
第六类是图与对比学习的结合,有4项研究的实现。
1. [GraphCL] Graph Contrastive Learning with Augmentations. NIPS2020.
Authors:Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, Yang Shen. paper
2. Contrastive Multi-View Representation Learning on Graphs. ICML2020.
Authors:Kaveh Hassani, Amir Hosein Khasahmadi. Paper
3. [GCC] GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training. KDD2020.
Authors:Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang, Jie Tang. Paper
4. [InfoGraph] InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization. ICLR2020.
Authors:Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, Jian Tang. Paper
7.Adversarial Learning
第七类是对抗训练+对比学习,目前只有1篇论文。
1. Contrastive Learning with Adversarial Examples. NIPS2020.
Authors:Chih-Hui Ho, Nuno Vasconcelos. paper
8.Recommendation
第八类是推荐系统结合对比学习,解决点击数据的稀疏性或增加模型的鲁棒性,有3篇论文。
1. Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation. AAAI2021.
Authors:Xin Xia, Hongzhi Yin, Junliang Yu, Qinyong Wang, Lizhen Cui, Xiangliang Zhang. paper code
2. Self-Supervised Multi-Channel Hypergraph Convolutional Network for Social Recommendation. WWW2021. Authors:Junliang Yu, Hongzhi Yin, Jundong Li, Qinyong Wang, Nguyen Quoc Viet Hung, Xiangliang Zhang. paper code
3. Self-supervised Graph Learning for Recommendation. SIGIR2021.
Authors:Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian, Xing Xie. paper code
9.Applications
第九类是对比学习在图像-图像翻译中的应用,有1篇论文。
1. Contrastive Learning for Unpaired Image-to-Image Translation.
Authors:Taesung ParkAlexei A. Efros, Richard ZhangJun-Yan Zhu. paper