妙不可言!写出优雅的 Python 代码的七条重要技巧

简介: 写出能完成功能的程序每个程序员都可以搞定,但能写出优雅的程序的程序员却寥寥无几,因此程序写的优雅与否则是区分顶级程序员与一般程序员的终极指标所在。那身为一名 Pythoner,有哪些技巧能让我们写出优雅的 Python 代码呢,今天派森酱就给大家介绍七个能快速提升代码逼格的重要技巧。

0x00 规范命名

没有哪个程序员会抗拒一段命名规范的代码!

命名作为编程界的一大难题,实属难倒了很多人。不知道你是否还记得自己那些曾经很沙雕的命名呢。

a,b,c  x,y,z a1,a2 4_s,4s... 
def do_something():
def fun():
...

相信你看到上面的命名也是一头雾水,好的命名不一定要写的多优雅,最起码要做到见名识意。统一的命名风格可以让代码看起来更简洁,风格更统一,这样阅读者一看就知道这个变量或者函数是用来干嘛的,不至于猜半天浪费过多的精力在不必要的事情上。

0x01 面向对象

Python 是一门面向对象语言,因此我们有必要熟悉面向对象的一些设计原则。

单一职责原则是指一个函数只做一件事,不要将多个功能集中在同一个函数中,不要大而全,要小而精。这样,当有需求变化时,我们只需要修改对应的部分即可,程序应对变化的能力明显提升。

开放封闭原则是指对扩展开放,对修改关闭。

写程序的都知道,甲方是善变的,今天说用这种方式实现,明天可能就变卦了,这太正常了。所以我们写程序时一定要注意程序的可扩展性,当甲方改动需求时,我们尽可能的少改动或者不改动原有代码,而是通过添加新的实现类来扩展功能,这意味着你系统的原有功能是不会遭到破坏的,则稳定性有极大提升。

接口隔离原则是指调用方不应该依赖其不需要的接口,接口间的依赖关系应当建立在最小功能接口原则之上。

单一职责和接口隔离都是为了提高类的内聚性,降低他们之间的耦合性。这是面向对象封装思想的完美体现。

0x02 使用 with

平时写代码难免会遇到操作文件的需求,一般都是用 open() 函数来打开一个文件,最后等操作完成之后通过 close() 函数来关闭文件,但有时候写多了难免会觉得很麻烦,难道不可以在我操作完自动关闭文件么,可以的。使用 with 来操作文件无需考虑关闭问题,我们只需要关心核心的业务逻辑即可。

with open('tmp.txt', 'w') as f:
    f.write('xxx')
    ...

0x03 使用 get

0.jpg


当我们从字典中获取一个不存在的 key 时,如果是用中括号的方式来获取的话程序会返回 KeyError。这时候建议通过 get() 函数来获取。

同时通过 get() 函数来获取 value 时还可以设置默认值 default_value,当 key 不存在时则会返回 default_value。

0x04 提前返回

平时写的代码中少不了 if else 等控制语句,但有时候有的小伙伴喜欢将 if else 嵌套好多层,过几个月之后自己都看不明白当时写的啥。

比如下面这个程序,根据考试成绩来做评级。

score = 100
if score >= 60: # 及格
    if score >= 70: # 中等
        if score >= 80: # 良好 
            if score >= 90: # 优秀
                if score >= 100: # 满分
                    print("满分")
                else:
                    print("优秀")
            else:
                print("良好")
        else:
            print("中等")
    else:
        print("及格")
else:
    print("不及格")
print("程序结束")

这种代码一看就想打人有木有,可读性极差。

代码的逻辑就是判断分数是否在一个区间,然后给出与之相匹配的评级,既然如此,则可以改写如下:

def get_score_level(score):
    if score >= 100: # 满分
        print("满分")
        return
    if score >= 90: # 优秀
        print("优秀")
        return
    if score >= 80: # 良好
        print("良好")
        return    
    if score >= 70: # 中等
        print("中等")
        return
    if score >= 60: # 及格
        print("及格")
        return
    print("不及格")
    print("程序结束")

这种处理方式是极其优雅的,从上往下清晰明了,大大增加了代码的可读性和可维护性。

0x05 生成器

我们都知道通过列表生成式可以直接创建一个新的列表,但受机器内存限制,列表的容量肯定是有限的。如果列表里面的数据是通过某种规律推导计算出来的,那是否可以在迭代过程中不断的推算出后面的元素呢,这样就不必一次性创建完整个列表,按需使用即可,这时候生成器就派上用场了。



1.jpg


0x06 装饰器

试想一下如下的场景,当后端接收到用户请求后,需要对用户进行鉴权,总不能将鉴权的代码复制来复制去吧;还有我们的项目都是需要记录日志的,这两种情况最适合使用装饰器。事实上 Flask 框架中就大量使用装饰器来进行鉴权操作。

一切皆对象!

在 Python 中我们可以在函数中定义函数,也可以从函数中返回函数,还可以将函数作为参数传给另一个函数。

def hi(name="yasoob"):
    print("now you are inside the hi() function")
    def greet():
        return "now you are in the greet() function"
    def welcome():
        return "now you are in the welcome() function"
    print(greet())
    print(welcome())
    print("now you are back in the hi() function")
hi()
# output
# now you are inside the hi() function
# now you are in the greet() function
# now you are in the welcome() function
# now you are back in the hi() function

在上面的代码中,我们在 hi() 函数内部定义了两个新的函数,无论何时调用 hi() 其内部的函数都将会被调用。

def hi(name="yasoob"):
    def greet():
        return "now you are in the greet() function"
    def welcome():
        return "now you are in the welcome() function"
    if name == "yasoob":
        return greet
    else:
        return welcome
a = hi()
print(a)
print(a())
# output
# <function hi.<locals>.greet at 0x7fe3e547a0e0>
# now you are in the greet() function

在这个例子中,由于默认参数 name = yasoob 因此 a = hi() 返回的是 greet 函数。a 也就指向了 hi() 函数内部的 greet() 函数。

def hi():
    return "hi yasoob!"
def doSomethingBeforeHi(func):
    print("I am doing some boring work before executing hi()")
    print(func())
doSomethingBeforeHi(hi)
# output
# I am doing some boring work before executing hi()
# hi yasoob!

在最后这个例子中,我们将 hi() 函数传递给了另外一个函数,并且他们还很愉快的执行了。

现在,让我们来看看 Python 中的装饰器吧。

def a_new_decorator(a_func):
    def wrapTheFunction():
        print("I am doing some boring work before executing a_func()")
        a_func()
        print("I am doing some boring work after executing a_func()")
    return wrapTheFunction
def a_function_requiring_decoration():
    print("I am the function which needs some decoration to remove my foul smell")
a_new_function_requiring_decoration = a_new_decorator(a_function_requiring_decoration)
a_new_function_requiring_decoration()
# output
# I am doing some boring work before executing a_func()
# I am the function which needs some decoration to remove my foul smell
# I am doing some boring work after executing a_func()

看懂了没,就是上面我们介绍的基础操作的组合。事实上这就是 python 中的装饰器所做的事,通过这种方式来修改一个函数的行为。

但如果每次都这么写的话未免也太麻烦了吧,因此 python 为我们提供了一个便捷操作 @

def a_new_decorator(a_func):
  ...
@a_new_decorator
def a_function_requiring_decoration():
    print("I am the function which needs some decoration to remove my foul smell")
a_function_requiring_decoration()
# output
# I am doing some boring work before executing a_func()
# I am the function which needs some decoration to remove my foul smell
# I am doing some boring work after executing a_func()

总结

今天派森酱给大家介绍了几个重要的提升代码逼格的技巧,小伙伴们还有什么独家技巧可以在评论区交流哦~

目录
相关文章
|
17天前
|
开发框架 数据建模 中间件
Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器是那些静悄悄的幕后英雄。它们不张扬,却能默默地为函数或类增添强大的功能。本文将带你了解装饰器的魅力所在,从基础概念到实际应用,我们一步步揭开装饰器的神秘面纱。准备好了吗?让我们开始这段简洁而富有启发性的旅程吧!
25 6
|
10天前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
48 8
|
17天前
|
API Python
【Azure Developer】分享一段Python代码调用Graph API创建用户的示例
分享一段Python代码调用Graph API创建用户的示例
41 11
|
19天前
|
测试技术 Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界中,装饰器是那些能够为我们的代码增添魔力的小精灵。它们不仅让代码看起来更加优雅,还能在不改变原有函数定义的情况下,增加额外的功能。本文将通过生动的例子和易于理解的语言,带你领略装饰器的奥秘,从基础概念到实际应用,一起开启Python装饰器的奇妙旅程。
33 11
|
14天前
|
Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器就像是给函数穿上了一件神奇的外套,让它们拥有了超能力。本文将通过浅显易懂的语言和生动的比喻,带你了解装饰器的基本概念、使用方法以及它们如何让你的代码变得更加简洁高效。让我们一起揭开装饰器的神秘面纱,看看它是如何在不改变函数核心逻辑的情况下,为函数增添新功能的吧!
|
15天前
|
程序员 测试技术 数据安全/隐私保护
深入理解Python装饰器:提升代码重用与可读性
本文旨在为中高级Python开发者提供一份关于装饰器的深度解析。通过探讨装饰器的基本原理、类型以及在实际项目中的应用案例,帮助读者更好地理解并运用这一强大的语言特性。不同于常规摘要,本文将以一个实际的软件开发场景引入,逐步揭示装饰器如何优化代码结构,提高开发效率和代码质量。
41 6
|
20天前
|
Python
如何提高Python代码的可读性?
如何提高Python代码的可读性?
33 4
|
19天前
|
Python
Python编程入门:从零开始的代码旅程
本文是一篇针对Python编程初学者的入门指南,将介绍Python的基本语法、数据类型、控制结构以及函数等概念。文章旨在帮助读者快速掌握Python编程的基础知识,并能够编写简单的Python程序。通过本文的学习,读者将能够理解Python代码的基本结构和逻辑,为进一步深入学习打下坚实的基础。
|
24天前
|
设计模式 监控 程序员
Python中的装饰器:功能增强与代码复用的利器####
本文深入探讨了Python中装饰器的工作原理、应用场景及其在提升代码可读性、减少重复劳动方面的优势。不同于传统方法的冗长和复杂,装饰器提供了一种优雅且高效的方式来增强函数或方法的功能。通过具体实例,我们将揭示装饰器如何简化错误处理、日志记录及性能监控等常见任务,使开发者能够专注于核心业务逻辑的实现。 ####
|
22天前
|
存储 设计模式 缓存
Python中的装饰器:代码的魔法增强剂####
本文将深入探讨Python语言中一个强大而灵活的特性——装饰器。不同于传统的函数调用,装饰器提供了一种优雅的方式来扩展或修改函数行为,无需直接修改原函数代码。我们将通过实例分析,揭示装饰器的定义、工作原理及其在实际项目中的应用价值,旨在帮助开发者更好地理解和利用这一高级功能,提升代码的可读性与维护性。 ####
下一篇
DataWorks