​LeetCode刷题实战359:日志速率限制器

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 算法的重要性,我就不多说了吧,想去大厂,就必须要经过基础知识和业务逻辑面试+算法面试。所以,为了提高大家的算法能力,这个公众号后续每天带大家做一道算法题,题目就从LeetCode上面选 !

今天和大家聊的问题叫做 日志速率限制器,我们先来看题面:https://leetcode-cn.com/problems/logger-rate-limiter/Design a logger system that receive stream of messages along with its timestamps, each message should be printed if and only if it is not printed in the last 10 seconds.Given a message and a timestamp (in seconds granularity), return true if the message should be printed in the given timestamp, otherwise returns false.It is possible that several messages arrive roughly at the same time.
请你设计一个日志系统,可以流式接收日志以及它的时间戳。该日志会被打印出来,需要满足一个条件:当且仅当日志内容 在过去的 10 秒钟内没有被打印过。给你一条日志的内容和它的时间戳(粒度为秒级),如果这条日志在给定的时间戳应该被打印出来,则返回 true,否则请返回 false。要注意的是,可能会有多条日志在同一时间被系统接收。

示例

Logger logger = new Logger();
// 日志内容 “foo” 在时刻 1 到达系统
logger.shouldPrintMessage(1, “foo”); returns true;
// 日志内容 “bar” 在时刻 2 到达系统
logger.shouldPrintMessage(2,“bar”); returns true;
// 日志内容 “foo” 在时刻 3 到达系统
logger.shouldPrintMessage(3,“foo”); returns false;
// 日志内容 “bar” 在时刻 8 到达系统
logger.shouldPrintMessage(8,“bar”); returns false;
// 日志内容 “foo” 在时刻 10 到达系统
logger.shouldPrintMessage(10,“foo”); returns false;
// 日志内容 “foo” 在时刻 11 到达系统
logger.shouldPrintMessage(11,“foo”); returns true;

解题


这道题让我们设计一个记录系统每次接受信息并保存时间戳,然后让我们打印出该消息,前提是最近10秒内没有打印出这个消息。这不是一道难题,我们可以用哈希表来做,建立消息和时间戳之间的映射,如果某个消息不再哈希表表,我们建立其和时间戳的映射,并返回true。如果应经在哈希表里了,我们看当前时间戳是否比哈希表中保存的时间戳大10,如果是,更新哈希表,并返回true,反之返回false,参见代码如下:

class Logger {
public:
    Logger() {}
    bool shouldPrintMessage(int timestamp, string message) {
        if (!m.count(message)) {
            m[message] = timestamp;
            return true;
        }
        if (timestamp - m[message] >= 10) {
            m[message] = timestamp;
            return true;
        }
        return false;
    }
private:
    unordered_map<string, int> m;
};

好了,今天的文章就到这里,如果觉得有所收获,请顺手点个在看或者转发吧,你们的支持是我最大的动力 。

相关实践学习
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
相关文章
|
1月前
|
存储 人工智能 算法
从零掌握贪心算法Java版:LeetCode 10题实战解析(上)
在算法世界里,有一种思想如同生活中的"见好就收"——每次做出当前看来最优的选择,寄希望于通过局部最优达成全局最优。这种思想就是贪心算法,它以其简洁高效的特点,成为解决最优问题的利器。今天我们就来系统学习贪心算法的核心思想,并通过10道LeetCode经典题目实战演练,带你掌握这种"步步为营"的解题思维。
|
4月前
|
运维 安全 数据可视化
日志审查安排工具实战攻略:中小团队如何通过日志审查安排工具建立可控、安全的审查机制?
在审计敏感时代,日志审查安排工具成为安全运维与合规管理的关键利器。它实现审查任务的流程化、周期化与可视化,支持多系统协作、责任到人,确保“可控、可查、可追”的日志治理。工具如板栗看板、Asana、Monday 等提供任务调度、问题闭环与合规对接能力,助力企业构建高效、透明的日志审查体系,提升安全与合规水平。
|
5月前
|
Go
【LeetCode 热题100】DP 实战进阶:最长递增子序列、乘积最大子数组、分割等和子集(力扣300 / 152/ 416 )(Go语言版)
本文深入解析三道经典的动态规划问题:**最长递增子序列(LIS)**、**乘积最大子数组** 和 **分割等和子集**。 - **300. LIS** 通过 `dp[i]` 表示以第 `i` 个元素结尾的最长递增子序列长度,支持 O(n²) 动态规划与 O(n log n) 的二分优化。 - **152. 乘积最大子数组** 利用正负数特性,同时维护最大值与最小值的状态转移方程。 - **416. 分割等和子集** 转化为 0-1 背包问题,通过布尔型 DP 实现子集和判断。 总结对比了三题的状态定义与解法技巧,并延伸至相关变种问题,助你掌握动态规划的核心思想与灵活应用!
242 1
|
5月前
|
分布式计算 算法 Go
【LeetCode 热题100】BFS/DFS 实战:岛屿数量 & 腐烂的橘子(力扣200 / 994 )(Go语言版)
本文讲解了两道经典的图论问题:**岛屿数量(LeetCode 200)** 和 **腐烂的橘子(LeetCode 994)**,分别通过 DFS/BFS 实现。在“岛屿数量”中,利用深度或广度优先搜索遍历二维网格,标记连通陆地并计数;“腐烂的橘子”则采用多源 BFS,模拟腐烂传播过程,计算最短时间。两者均需掌握访问标记技巧,是学习网格搜索算法的绝佳实践。
243 1
|
Unix Shell Linux
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
本文提供了几个Linux shell脚本编程问题的解决方案,包括转置文件内容、统计词频、验证有效电话号码和提取文件的第十行,每个问题都给出了至少一种实现方法。
250 6
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
|
存储 运维 监控
超越传统模型:从零开始构建高效的日志分析平台——基于Elasticsearch的实战指南
【10月更文挑战第8天】随着互联网应用和微服务架构的普及,系统产生的日志数据量日益增长。有效地收集、存储、检索和分析这些日志对于监控系统健康状态、快速定位问题以及优化性能至关重要。Elasticsearch 作为一种分布式的搜索和分析引擎,以其强大的全文检索能力和实时数据分析能力成为日志处理的理想选择。
828 6
|
5月前
|
人工智能 运维 监控
Aipy实战:分析apache2日志中的网站攻击痕迹
Apache2日志系统灵活且信息全面,但安全分析、实时分析和合规性审计存在较高技术门槛。为降低难度,可借助AI工具如aipy高效分析日志,快速发现攻击痕迹并提供反制措施。通过结合AI与学习技术知识,新手运维人员能更轻松掌握复杂日志分析任务,提升工作效率与技能水平。
|
5月前
|
Go
【LeetCode 热题100】BFS/DFS 实战:岛屿数量 & 腐烂的橘子(力扣200 / 994 )(Go语言版)
本篇博客详细解析了三道经典的动态规划问题:198. 打家劫舍(线性状态转移)、279. 完全平方数与322. 零钱兑换(完全背包问题)。通过 Go 语言实现,帮助读者掌握动态规划的核心思想及其实战技巧。从状态定义到转移方程,逐步剖析每道题的解法,并总结其异同点,助力解决更复杂的 DP 问题。适合初学者深入理解动态规划的应用场景和优化方法。
183 0
|
Java 程序员 应用服务中间件
「测试线排查的一些经验-中篇」&& 调试日志实战
「测试线排查的一些经验-中篇」&& 调试日志实战
197 1
「测试线排查的一些经验-中篇」&& 调试日志实战
|
Java Maven Spring
超实用的SpringAOP实战之日志记录
【11月更文挑战第11天】本文介绍了如何使用 Spring AOP 实现日志记录功能。首先概述了日志记录的重要性及 Spring AOP 的优势,然后详细讲解了搭建 Spring AOP 环境、定义日志切面、优化日志内容和格式的方法,最后通过测试验证日志记录功能的准确性和完整性。通过这些步骤,可以有效提升系统的可维护性和可追踪性。
353 1

热门文章

最新文章