【数据挖掘】数据挖掘算法 组件化思想 示例分析 ( 组件化思想 | Apriori 算法 | K-means 算法 | ID3 算法 )

本文涉及的产品
数据管理 DMS,安全协同 3个实例 3个月
推荐场景:
学生管理系统数据库
简介: 【数据挖掘】数据挖掘算法 组件化思想 示例分析 ( 组件化思想 | Apriori 算法 | K-means 算法 | ID3 算法 )

文章目录

一、 数据挖掘算法组件化思想

二、 Apriori 算法 ( 关联分析算法 )

三、 K-means 算法 ( 聚类分析算法 )

四、 ID3 算法 ( 决策树算法 )



一、 数据挖掘算法组件化思想


0 . 数据挖掘算法的五个标准组件 :


① 模型或模式结构 : 决策树模型 , ( 信念 ) 贝叶斯模型 , 神经网络模型 等 ;

② 数据挖掘任务 : 概念描述 , 关联分析 , 分类 , 聚类 , 异常检测 , 趋势分析 等 ;

③ 评分函数 : 误差平方和 , 最大似然 , 准确率 等 ;

④ 搜索和优化方法 : 随机梯度下降 ;

⑤ 数据管理策略 : 数据存储 , 数据库相关 ;


1 . 模型或模式结构 : 通过 数据挖掘过程 得到知识 ; 是算法的输出格式 , 使用 模型 / 模式 将其表达出来, 如 : 线性回归模型 , 层次聚类模型 , 频繁序列模式 等 ;



2 . 数据挖掘任务分类 : 根据数据挖掘的目标 , 可以将数据挖掘任务分为以下几类 : ① 模式挖掘 , ② 描述建模 , ③ 预测建模 ;



① 模式挖掘 : 如 异常模式 , 频繁模式 ;


② 描述建模 : 如 聚类分析 ;


③ 预测建模 : 如 分类预测 , 趋势分析等 ;



3 . 评分函数 :



① 评分函数概念 : 评分函数用于评估 数据集 与 模型 ( 模式 ) 的拟合程度 , 值 越大 ( 越小 ) 越好 ;


② 评分函数作用 : 为 模型 ( 模式 ) 选出最合适的参数值 ;



4 . 搜索和优化算法作用 : 确定 模型 ( 模式 ) 以及其相关的 参数值 , 该模型 ( 模式 ) 使评分函数 达到某个最大 ( 最小 ) 值 ; 本质是帮助评分函数取得 最大 ( 最小 ) 值的方法 ;



① 结构确定求参数 ( 优化问题 ) : 模型 ( 模式 ) 结构确定后 , 目的就是为了确定参数值 , 针对固定的 模式 ( 模型 ) 结构 , 确定一组参数值 , 使评分函数最优 , 这是优化问题 ;


② 结构不确定 ( 搜索问题 ) : 搜索 既需要确定 模型 ( 模式 ) 的结构 , 又需要确定其参数值 , 这种类型是搜索问题 ;



5 . 数据管理策略 : 传统数据与大数据 ;



① 传统数据 ( 内存管理数据 ) : 传统的数据管理方法是将数据都放入内存中 , 少量数据 , 直接在内存中处理 , 不需要特别关注数据管理技术 ;


② 大数据 ( 集群管理数据 ) : 数据挖掘中的数据一般是 GB , TB 甚至 PB 级别的大数据 , 如果使用传统的内存算法处理这些数据 , 性能会很低 ;




二、 Apriori 算法 ( 关联分析算法 )


1 . 数据挖掘任务 : 关联模式挖掘 ;



2 . 模型 ( 模式 ) 结构 : 关联规则 , 类似于键值对结构 , 如购买啤酒的很大几率购买尿布 , 规则如下 : {啤酒} -> {尿布} ;



3 . 搜索空间 : 针对一个 “格” , 这个 “格” 是所有条目的可能组合 ; 如对购买的商品进行关联分析 , 那么搜索空间就是所有的商品 ;



4 . 搜索空间示例 : 有 4 种商品 A , B , C , D , 购买时有可能产生哪些组合呢 :


如果购买 1 个商品 , 有 C(4 , 1) 种组合 ;

如果购买 2 个商品 , 有 C(4 , 2) 种组合 ;

如果购买 3 个商品 , 有 C(4 , 3) 种组合 ;

如果购买 4 个商品 , 有 C(4 , 4) 种组合 ;


搜索空间就是上面的所有可能组合 ; 其中 C(4 , 2) 就是从 4 个元素的集合中任选 2 个的组合 , 参考离散数学的排列组合公式 ;



5 . 搜索空间概念 : 搜索和优化算法的搜索空间 , 如宽度优先遍历图时 , 先要有图的数据结构 , 这个图的数据结构就是搜索空间 ;



6 . 评分函数 : 支持度 , 可信度 ;



7 . 搜索和优化算法 : 宽度优先搜索 ;



8 . 数据管理策略 : 内存中管理数据 ;




三、 K-means 算法 ( 聚类分析算法 )


1 . 数据挖掘任务 : 聚类分析 ;



2 . 模型 ( 模式 ) 结构 : 聚类结果 , 将数据分组 , 若干组数据就是聚类分析的结果 ;



3 . 搜索空间 : 找到中心点 , 其它成员向其靠拢 , 以此为依据分组 ;



4 . 评分函数 : 误差平方和 ;



5 . 搜索优化方法 : 梯度下降方法 ;



6 . 数据管理策略 : 内存管理 ;




四、 ID3 算法 ( 决策树算法 )


1 . 数据挖掘任务 : 分类 ;



2 . 模型 ( 模式 ) 结构 : 决策树 , 树型结构 ;



3 . 搜索空间 : 决策树的所有可能的组合 ;



4 . 评分函数 : 准确率 , 分类结果越准确越好 ; 信息增益 ;



5 . 搜索优化方法 : 贪婪算法 , 确保当前步骤最优 , 但全局不一定最优 ;

6 . 数据管理策略 : 内存管理 ;

相关实践学习
MySQL基础-学生管理系统数据库设计
本场景介绍如何使用DMS工具连接RDS,并使用DMS图形化工具创建数据库表。
目录
相关文章
|
3月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
97 3
|
6天前
|
存储 算法 安全
基于哈希表的文件共享平台 C++ 算法实现与分析
在数字化时代,文件共享平台不可或缺。本文探讨哈希表在文件共享中的应用,包括原理、优势及C++实现。哈希表通过键值对快速访问文件元数据(如文件名、大小、位置等),查找时间复杂度为O(1),显著提升查找速度和用户体验。代码示例展示了文件上传和搜索功能,实际应用中需解决哈希冲突、动态扩容和线程安全等问题,以优化性能。
|
15天前
|
缓存 算法 搜索推荐
Java中的算法优化与复杂度分析
在Java开发中,理解和优化算法的时间复杂度和空间复杂度是提升程序性能的关键。通过合理选择数据结构、避免重复计算、应用分治法等策略,可以显著提高算法效率。在实际开发中,应该根据具体需求和场景,选择合适的优化方法,从而编写出高效、可靠的代码。
26 6
|
2月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
68 1
|
3月前
|
并行计算 算法 IDE
【灵码助力Cuda算法分析】分析共享内存的矩阵乘法优化
本文介绍了如何利用通义灵码在Visual Studio 2022中对基于CUDA的共享内存矩阵乘法优化代码进行深入分析。文章从整体程序结构入手,逐步深入到线程调度、矩阵分块、循环展开等关键细节,最后通过带入具体值的方式进一步解析复杂循环逻辑,展示了通义灵码在辅助理解和优化CUDA编程中的强大功能。
|
3月前
|
算法
PID算法原理分析
【10月更文挑战第12天】PID控制方法从提出至今已有百余年历史,其由于结构简单、易于实现、鲁棒性好、可靠性高等特点,在机电、冶金、机械、化工等行业中应用广泛。
|
4月前
|
算法 搜索推荐 开发者
别再让复杂度拖你后腿!Python 算法设计与分析实战,教你如何精准评估与优化!
在 Python 编程中,算法的性能至关重要。本文将带您深入了解算法复杂度的概念,包括时间复杂度和空间复杂度。通过具体的例子,如冒泡排序算法 (`O(n^2)` 时间复杂度,`O(1)` 空间复杂度),我们将展示如何评估算法的性能。同时,我们还会介绍如何优化算法,例如使用 Python 的内置函数 `max` 来提高查找最大值的效率,或利用哈希表将查找时间从 `O(n)` 降至 `O(1)`。此外,还将介绍使用 `timeit` 模块等工具来评估算法性能的方法。通过不断实践,您将能更高效地优化 Python 程序。
75 4
|
4月前
|
算法 程序员 Python
程序员必看!Python复杂度分析全攻略,让你的算法设计既快又省内存!
在编程领域,Python以简洁的语法和强大的库支持成为众多程序员的首选语言。然而,性能优化仍是挑战。本文将带你深入了解Python算法的复杂度分析,从时间与空间复杂度入手,分享四大最佳实践:选择合适算法、优化实现、利用Python特性减少空间消耗及定期评估调整,助你写出高效且节省内存的代码,轻松应对各种编程挑战。
82 1
|
3月前
|
算法
PID算法原理分析及优化
【10月更文挑战第6天】PID控制方法从提出至今已有百余年历史,其由于结构简单、易于实现、鲁棒性好、可靠性高等特点,在机电、冶金、机械、化工等行业中应用广泛。
|
3月前
|
算法 安全 Go
Python与Go语言中的哈希算法实现及对比分析
Python与Go语言中的哈希算法实现及对比分析
55 0

热门文章

最新文章