CV:基于keras利用算法MobilenetV2实现局部相似域的多人二维姿态实时估计(詹姆斯扣篮+美女跳舞)

简介: CV:基于keras利用算法MobilenetV2实现局部相似域的多人二维姿态实时估计(詹姆斯扣篮+美女跳舞)

输出结果


论文复现:《Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields》

https://arxiv.org/abs/1611.08050


image.png

image.png






代码实现


更新……


import argparse

import time

import cv2

from processing import extract_parts, draw

from config_reader import config_reader

from model.cmu_model import get_testing_model

#CV:基于keras利用算法MobilenetV2实现局部相似域的多人二维姿态实时估计

#论文复现:《Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields》

if __name__ == '__main__':

   parser = argparse.ArgumentParser()

#     parser.add_argument('--image', type=str, required=True, help='input image')

   parser.add_argument('--image', type=str, default='F:/File_Python/Python_example/Human_Posture_Detection/images/ZMS03.jpg', help='input image')

   parser.add_argument('--output', type=str, default='result.png', help='output image')

   parser.add_argument('--model', type=str, default='model/keras_Realtime_Multi_Person_Pose_Estimation_model.h5', help='path to the weights file')

   args = parser.parse_args()

   image_path = args.image

   output = args.output

   keras_weights_file = args.model

   tic = time.time()

   print('start processing...')

   # load model

   # authors of original model don't use

   # vgg normalization (subtracting mean) on input images

   model = get_testing_model()

   model.load_weights(keras_weights_file)

   # load config

   params, model_params = config_reader()

 

   input_image = cv2.imread(image_path)  # B,G,R order

 

   body_parts, all_peaks, subset, candidate = extract_parts(input_image, params, model, model_params)

   canvas = draw(input_image, all_peaks, subset, candidate)

 

   toc = time.time()

   print('processing time is %.5f' % (toc - tic))

 

   cv2.imshow('keras_Realtime_Multi_Person_Pose_Estimation_model',canvas)

   cv2.waitKey()

   cv2.imwrite(output, canvas)

   cv2.destroyAllWindows()







相关文章
|
27天前
|
传感器 算法 Shell
【使用卡尔曼滤波器将陀螺仪和加速度计的读数融合,以获取IMU的姿态(四元数)】实现了所谓的“零速度更新”算法,用于行人跟踪(步态跟踪)(Matlab代码实现)
【使用卡尔曼滤波器将陀螺仪和加速度计的读数融合,以获取IMU的姿态(四元数)】实现了所谓的“零速度更新”算法,用于行人跟踪(步态跟踪)(Matlab代码实现)
|
2月前
|
人工智能 算法 安全
【博士论文】基于局部中心量度的聚类算法研究(Matlab代码实现)
【博士论文】基于局部中心量度的聚类算法研究(Matlab代码实现)
|
3月前
|
监控 算法 决策智能
基于盲源分离与贝叶斯非局部均值的图像降噪算法
基于盲源分离与贝叶斯非局部均值的图像降噪算法
94 0
|
7月前
|
算法 数据挖掘 数据安全/隐私保护
基于CS模型和CV模型的多目标协同滤波跟踪算法matlab仿真
本项目基于CS模型和CV模型的多目标协同滤波跟踪算法,旨在提高复杂场景下多个移动目标的跟踪精度和鲁棒性。通过融合目标间的关系和数据关联性,优化跟踪结果。程序在MATLAB2022A上运行,展示了真实轨迹与滤波轨迹的对比、位置及速度误差均值和均方误差等关键指标。核心代码包括对目标轨迹、速度及误差的详细绘图分析,验证了算法的有效性。该算法结合CS模型的初步聚类和CV模型的投票机制,增强了目标状态估计的准确性,尤其适用于遮挡、重叠和快速运动等复杂场景。
|
8月前
|
算法 数据安全/隐私保护
基于ADRC自抗扰算法的UAV飞行姿态控制系统simulink建模与仿真
本课题基于ADRC自抗扰算法,使用MATLAB2022a在Simulink中建模与仿真UAV飞行姿态控制系统,分别对偏航(Yaw)、俯仰(Pitch)和滚转(Roll)进行控制。ADRC通过扩展状态观测器(ESO)实时估计并抵消扰动,结合非线性反馈控制策略,减少了对精确模型的依赖,增强了系统的鲁棒性和适应性。仿真结果显示该方法能有效实现UAV的姿态控制,确保其在复杂环境中的稳定飞行和精确操控。
|
9月前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
155 10
|
算法 计算机视觉
图像处理之积分图应用四(基于局部均值的图像二值化算法)
图像处理之积分图应用四(基于局部均值的图像二值化算法)
737 0
|
算法 数据安全/隐私保护 C++
基于二维CS-SCHT变换和扩频方法的彩色图像水印嵌入和提取算法matlab仿真
该内容是关于一个图像水印算法的描述。在MATLAB2022a中运行,算法包括水印的嵌入和提取。首先,RGB图像转换为YUV格式,然后水印通过特定规则嵌入到Y分量中,并经过Arnold置乱增强安全性。水印提取时,经过逆过程恢复,使用了二维CS-SCHT变换和噪声对比度(NC)计算来评估水印的鲁棒性。代码中展示了从RGB到YUV的转换、水印嵌入、JPEG压缩攻击模拟以及水印提取的步骤。
|
机器学习/深度学习 运维 算法
Python基于局部离群因子LOF算法(LocalOutlierFactor)实现信用卡数据异常值检测项目实战
Python基于局部离群因子LOF算法(LocalOutlierFactor)实现信用卡数据异常值检测项目实战
基于PID-bang-bang控制算法的卫星姿态控制matlab仿真
该文主要介绍了一个基于PID-bang-bang控制算法的卫星姿态控制系统。在MATLAB2022a中进行了仿真,生成了控制收敛曲线和姿态调整动画。系统通过PID控制器减少误差,结合Bang-Bang控制实现快速响应。核心程序涉及卫星位置、推力向量的计算及动画绘制。PID控制器利用比例、积分、微分项调整输出,Bang-Bang控制则在误差超出阈值时提供即时修正。两者结合以平衡控制精度和响应速度,适应卫星姿态的精确调节需求。

热门文章

最新文章