Flink+Hudi 构架湖仓一体化解决方案

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 详细介绍了 Flink + Hudi 湖仓一体化方案的原型构建。

本文转载自公众号【麒思妙想】,详细介绍了 Flink + Hudi 湖仓一体化方案的原型构建。主要内容为:

  1. Hudi
  2. 新架构与湖仓一体
  3. 最佳实践
  4. Flink on Hudi
  5. Flink CDC 2.0 on Hudi

一、Hudi

1. 简介

Apache Hudi (发音为 “Hoodie”)在 DFS 的数据集上提供以下流原语

  • 插入更新 (如何改变数据集?)
  • 增量拉取 (如何获取变更的数据?)

Hudi 维护在数据集上执行的所有操作的时间轴 (timeline),以提供数据集的即时视图。Hudi 将数据集组织到与 Hive 表非常相似的基本路径下的目录结构中。数据集分为多个分区,文件夹包含该分区的文件。每个分区均由相对于基本路径的分区路径唯一标识。

分区记录会被分配到多个文件。每个文件都有一个唯一的文件 ID 和生成该文件的提交 (commit)。如果有更新,则多个文件共享相同的文件 ID,但写入时的提交 (commit) 不同。

存储类型 – 处理数据的存储方式

  • 写时复制
  • 纯列式
  • 创建新版本的文件
  • 读时合并
  • 近实时

视图 – 处理数据的读取方式

读取优化视图 - 输入格式仅选择压缩的列式文件

  • parquet 文件查询性能
  • 500GB 的延迟时间约为 30 分钟
  • 导入现有的 Hive 表

近实时视图

  • 混合、格式化数据
  • 约 1-5 分钟的延迟
  • 提供近实时表

增量视图

  • 数据集的变更
  • 启用增量拉取

Hudi 存储层由三个不同的部分组成

元数据 – 它以时间轴的形式维护了在数据集上执行的所有操作的元数据,该时间轴允许将数据集的即时视图存储在基本路径的元数据目录下。时间轴上的操作类型包括

  • 提交 (commit),一次提交表示将一批记录原子写入数据集中的过程。单调递增的时间戳,提交表示写操作的开始。
  • 清理 (clean),清理数据集中不再被查询中使用的文件的较旧版本。
  • 压缩 (compaction),将行式文件转化为列式文件的动作。
  • 索引,将传入的记录键快速映射到文件 (如果已存在记录键)。索引实现是可插拔的,Bloom 过滤器 - 由于不依赖任何外部系统,因此它是默认配置,索引和数据始终保持一致。Apache HBase - 对少量 key 更高效。在索引标记过程中可能会节省几秒钟。
  • 数据,Hudi 以两种不同的存储格式存储数据。实际使用的格式是可插入的,但要求具有以下特征 – 读优化的列存储格式 (ROFormat),默认值为 Apache Parquet;写优化的基于行的存储格式 (WOFormat),默认值为 Apache Avro。

图片

2. 为什么 Hudi 对于大规模和近实时应用很重要?

Hudi 解决了以下限制:

  • HDFS 的可伸缩性限制;
  • 需要在 Hadoop 中更快地呈现数据;
  • 没有直接支持对现有数据的更新和删除;
  • 快速的 ETL 和建模;
  • 要检索所有更新的记录,无论这些更新是添加到最近日期分区的新记录还是对旧数据的更新,Hudi 都允许用户使用最后一个检查点时间戳。此过程不用执行扫描整个源表的查询。

3. Hudi的优势

  • HDFS 中的可伸缩性限制;
  • Hadoop 中数据的快速呈现;
  • 支持对于现有数据的更新和删除;
  • 快速的 ETL 和建模。

(以上内容主要引用于:《Apache Hudi 详解》)

二、新架构与湖仓一体

通过湖仓一体、流批一体,准实时场景下做到了:数据同源、同计算引擎、同存储、同计算口径。数据的时效性可以到分钟级,能很好的满足业务准实时数仓的需求。下面是架构图:

图片

MySQL 数据通过 Flink CDC 进入到 Kafka。之所以数据先入 Kafka 而不是直接入 Hudi,是为了实现多个实时任务复用 MySQL 过来的数据,避免多个任务通过 Flink CDC 接 MySQL 表以及 Binlog,对 MySQL 库的性能造成影响。

通过 CDC 进入到 Kafka 的数据除了落一份到离线数据仓库的 ODS 层之外,会同时按照实时数据仓库的链路,从 ODS->DWD->DWS->OLAP 数据库,最后供报表等数据服务使用。实时数仓的每一层结果数据会准实时的落一份到离线数仓,通过这种方式做到程序一次开发、指标口径统一,数据统一。

从架构图上,可以看到有一步数据修正 (重跑历史数据) 的动作,之所以有这一步是考虑到:有可能存在由于口径调整或者前一天的实时任务计算结果错误,导致重跑历史数据的情况。

而存储在 Kafka 的数据有失效时间,不会存太久的历史数据,重跑很久的历史数据无法从 Kafka 中获取历史源数据。再者,如果把大量的历史数据再一次推到 Kafka,走实时计算的链路来修正历史数据,可能会影响当天的实时作业。所以针对重跑历史数据,会通过数据修正这一步来处理。

总体上说,这个架构属于 Lambda 和 Kappa 混搭的架构。流批一体数据仓库的各个数据链路有数据质量校验的流程。第二天对前一天的数据进行对账,如果前一天实时计算的数据无异常,则不需要修正数据,Kappa 架构已经足够。

(本节内容,引用自:《37 手游基于 Flink CDC + Hudi 湖仓一体方案实践》)

三、最佳实践

1. 版本搭配

版本选择,这个问题可能会成为困扰大家的第一个绊脚石,下面是 Hudi 中文社区推荐的版本适配:

Flink Hudi
1.12.2 0.9.0
1.13.1 0.10.0

建议用 Hudi master +Flink 1.13 这样可以和 CDC connector 更好地适配。

2. 下载Hudi

https://mvnrepository.com/artifact/org.apache.Hudi/Hudi-Flink-bundle

目前 maven 中央仓库,最新版本是 0.9.0 ,如果需要下载 0.10.0 版本 , 可以加入社区群,在共享文件中下载,也可以下载源码自行编译。

3. 执行

如果将 Hudi-Flink-bundle_2.11-0.10.0.jar 放到了 Flink/lib 下,则只需要如下执行即可,否则会出现各种找不到类的异常

bin/SQL-client.sh embedded

四、Flink on Hudi

新建 maven 工程,修改 pom 如下:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>org.example</groupId>
    <artifactId>Flink_Hudi_test</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <maven.compiler.source>8</maven.compiler.source>
        <maven.compiler.target>8</maven.compiler.target>
        <Flink.version>1.13.1</Flink.version>
        <Hudi.version>0.10.0</Hudi.version>
        <hadoop.version>2.10.1</hadoop.version>
    </properties>

    <dependencies>


        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>${hadoop.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-hdfs</artifactId>
            <version>${hadoop.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>${hadoop.version}</version>
        </dependency>


        <dependency>
            <groupId>org.apache.Flink</groupId>
            <artifactId>Flink-core</artifactId>
            <version>${Flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.Flink</groupId>
            <artifactId>Flink-streaming-java_2.11</artifactId>
            <version>${Flink.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.Flink</groupId>
            <artifactId>Flink-connector-jdbc_2.11</artifactId>
            <version>${Flink.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.Flink</groupId>
            <artifactId>Flink-java</artifactId>
            <version>${Flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.Flink</groupId>
            <artifactId>Flink-clients_2.11</artifactId>
            <version>${Flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.Flink</groupId>
            <artifactId>Flink-table-api-java-bridge_2.11</artifactId>
            <version>${Flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.Flink</groupId>
            <artifactId>Flink-table-common</artifactId>
            <version>${Flink.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.Flink</groupId>
            <artifactId>Flink-table-planner_2.11</artifactId>
            <version>${Flink.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.Flink</groupId>
            <artifactId>Flink-table-planner-blink_2.11</artifactId>
            <version>${Flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.Flink</groupId>
            <artifactId>Flink-table-planner-blink_2.11</artifactId>
            <version>${Flink.version}</version>
            <type>test-jar</type>
        </dependency>

        <dependency>
            <groupId>com.ververica</groupId>
            <artifactId>Flink-connector-mySQL-CDC</artifactId>
            <version>2.0.0</version>
        </dependency>

        <dependency>
            <groupId>org.apache.Hudi</groupId>
            <artifactId>Hudi-Flink-bundle_2.11</artifactId>
            <version>${Hudi.version}</version>
            <scope>system</scope>
            <systemPath>${project.basedir}/libs/Hudi-Flink-bundle_2.11-0.10.0-SNAPSHOT.jar</systemPath>
        </dependency>

        <dependency>
            <groupId>mySQL</groupId>
            <artifactId>mySQL-connector-java</artifactId>
            <version>5.1.49</version>
        </dependency>


    </dependencies>
</project>

我们通过构建查询insert into t2 select replace(uuid(),'-',''),id,name,description,now() from mySQL_binlog 将创建的 MySQL 表,插入到 Hudi 里。

package name.lijiaqi;

import org.apache.Flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.Flink.table.api.EnvironmentSettings;
import org.apache.Flink.table.api.SQLDialect;
import org.apache.Flink.table.api.TableResult;
import org.apache.Flink.table.api.bridge.java.StreamTableEnvironment;

public class MySQLToHudiExample {
    public static void main(String[] args) throws Exception {
        EnvironmentSettings fsSettings = EnvironmentSettings.newInstance()
                .useBlinkPlanner()
                .inStreamingMode()
                .build();
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env, fsSettings);

        tableEnv.getConfig().setSQLDialect(SQLDialect.DEFAULT);

        // 数据源表
        String sourceDDL =
                "CREATE TABLE mySQL_binlog (\n" +
                        " id INT NOT NULL,\n" +
                        " name STRING,\n" +
                        " description STRING\n" +
                        ") WITH (\n" +
                        " 'connector' = 'jdbc',\n" +
                        " 'url' = 'jdbc:mySQL://127.0.0.1:3306/test', \n"+
                        " 'driver' = 'com.mySQL.jdbc.Driver', \n"+
                        " 'username' = 'root',\n" +
                        " 'password' = 'dafei1288', \n" +
                        " 'table-name' = 'test_CDC'\n" +
                        ")";

        // 输出目标表
        String sinkDDL =
                "CREATE TABLE t2(\n" +
                        "\tuuid VARCHAR(20),\n"+
                        "\tid INT NOT NULL,\n" +
                        "\tname VARCHAR(40),\n" +
                        "\tdescription VARCHAR(40),\n" +
                        "\tts TIMESTAMP(3)\n"+
//                        "\t`partition` VARCHAR(20)\n" +
                        ")\n" +
//                        "PARTITIONED BY (`partition`)\n" +
                        "WITH (\n" +
                        "\t'connector' = 'Hudi',\n" +
                        "\t'path' = 'hdfs://172.19.28.4:9000/Hudi_t4/',\n" +
                        "\t'table.type' = 'MERGE_ON_READ'\n" +
                        ")" ;
        // 简单的聚合处理
        String transformSQL =
                "insert into t2 select replace(uuid(),'-',''),id,name,description,now()  from mySQL_binlog";

        tableEnv.executeSQL(sourceDDL);
        tableEnv.executeSQL(sinkDDL);
        TableResult result = tableEnv.executeSQL(transformSQL);
        result.print();

        env.execute("mySQL-to-Hudi");
    }
}

查询 Hudi

package name.lijiaqi;

import org.apache.Flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.Flink.table.api.EnvironmentSettings;
import org.apache.Flink.table.api.SQLDialect;
import org.apache.Flink.table.api.TableResult;
import org.apache.Flink.table.api.bridge.java.StreamTableEnvironment;

public class ReadHudi {
    public static void main(String[] args) throws Exception {
        EnvironmentSettings fsSettings = EnvironmentSettings.newInstance()
                .useBlinkPlanner()
                .inStreamingMode()
                .build();
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env, fsSettings);

        tableEnv.getConfig().setSQLDialect(SQLDialect.DEFAULT);

        String sourceDDL =
                "CREATE TABLE t2(\n" +
                        "\tuuid VARCHAR(20),\n"+
                        "\tid INT NOT NULL,\n" +
                        "\tname VARCHAR(40),\n" +
                        "\tdescription VARCHAR(40),\n" +
                        "\tts TIMESTAMP(3)\n"+
//                        "\t`partition` VARCHAR(20)\n" +
                        ")\n" +
//                        "PARTITIONED BY (`partition`)\n" +
                        "WITH (\n" +
                        "\t'connector' = 'Hudi',\n" +
                        "\t'path' = 'hdfs://172.19.28.4:9000/Hudi_t4/',\n" +
                        "\t'table.type' = 'MERGE_ON_READ'\n" +
                        ")" ;
        tableEnv.executeSQL(sourceDDL);
        TableResult result2 = tableEnv.executeSQL("select * from t2");
        result2.print();

        env.execute("read_Hudi");
    }
}

展示结果

图片

五、Flink CDC 2.0 on Hudi

上一章节,我们使用代码形式构建实验,在本章节里,我们直接使用官网下载的 Flink 包来构建实验环境。

1. 添加依赖

添加如下依赖到 $Flink_HOME/lib 下:

  • Hudi-Flink-bundle_2.11-0.10.0-SNAPSHOT.jar (修改 Master 分支的 Hudi Flink 版本为 1.13.2 然后构建)
  • hadoop-mapreduce-client-core-2.7.3.jar (解决 Hudi ClassNotFoundException)
  • Flink-SQL-connector-mySQL-CDC-2.0.0.jar
  • Flink-format-changelog-json-2.0.0.jar
  • Flink-SQL-connector-Kafka_2.11-1.13.2.jar

注意,在寻找 jar 的时候,CDC 2.0 更新过group id ,不再试 com.alibaba.ververica 而是改成了 com.ververica

图片

2. Flink SQL CDC on Hudi

创建 MySQL CDC 表

CREATE  TABLE mySQL_users (
 id BIGINT PRIMARY KEY NOT ENFORCED ,
 name STRING,
 birthday TIMESTAMP(3),
 ts TIMESTAMP(3)
) WITH (
 'connector' = 'mySQL-CDC',
 'hostname' = 'localhost',
 'port' = '3306',
 'username' = 'root',
 'password' = 'dafei1288',
 'server-time-zone' = 'Asia/Shanghai',
 'database-name' = 'test',
 'table-name' = 'users'   
);

创建 Hudi 表

CREATE TABLE Hudi_users5(
 id BIGINT PRIMARY KEY NOT ENFORCED,
    name STRING,
    birthday TIMESTAMP(3),
    ts TIMESTAMP(3),
    `partition` VARCHAR(20)
) PARTITIONED BY (`partition`) WITH (
    'connector' = 'Hudi',
    'table.type' = 'MERGE_ON_READ',
    'path' = 'hdfs://localhost:9009/Hudi/Hudi_users5'
);

修改配置,让查询模式输出为表,设置 checkpoint

set execution.result-mode=tableau;

set execution.checkpointing.interval=10sec;

进行输入导入

INSERT INTO Hudi_users5(id,name,birthday,ts, partition) SELECT id,name,birthday,ts,DATE_FORMAT(birthday, 'yyyyMMdd') FROM mySQL_users;

查询数据

select * from Hudi_users5;

执行结果

图片

3. 卡执行计划

图片

这个问题研究了很久,表面上很正常,日志也没有任何报错,也可以看出来 CDC 起作用了,有数据写入,但是就是卡在 hoodie_stream_write 上一动不动,没有数据下发。感谢社区大佬 Danny Chan 的提点,可能是 checkpoint的问题,于是做了设置

set execution.checkpointing.interval=10sec;

于是终于正常:

图片

至此,Flink + Hudi 湖仓一体化方案的原型构建完成。

参考链接

https://blog.csdn.net/weixin_49218925/article/details/115511022

https://blog.csdn.net/qq_37095882/article/details/103714548

https://mp.weixin.qq.com/s/xoucbJxzO2Zkq_b2_WDUbA

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
2月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
167 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
3月前
|
分布式计算 监控 大数据
大数据-131 - Flink CEP 案例:检测交易活跃用户、超时未交付
大数据-131 - Flink CEP 案例:检测交易活跃用户、超时未交付
97 0
|
7天前
|
SQL 分布式计算 大数据
湖仓融合:MaxComputee与Hologres基于OpenLake的湖上解决方案
本次主题探讨湖仓融合:MaxCompute与Hologres基于OpenLake的湖上解决方案。首先从数据湖和数据仓库的历史及业界解决方案出发,分析湖仓融合的两种思路;接着针对国内问题,介绍阿里云如何通过MaxCompute和Hologres解决湖仓融合中的挑战,特别是在非结构化数据处理方面的能力。最后,重点讲解Object Table为湖仓增添了SQL生态的非结构化数据处理能力,提升数据处理效率和安全性,使用户能够在云端灵活处理各类数据。
zdl
|
2月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
173 56
|
7天前
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。
|
2月前
|
SQL 流计算 关系型数据库
基于OpenLake的Flink+Paimon+EMR StarRocks流式湖仓分析
阿里云OpenLake解决方案建立在开放可控的OpenLake湖仓之上,提供大数据搜索与AI一体化服务。通过元数据管理平台DLF管理结构化、半结构化和非结构化数据,提供湖仓数据表和文件的安全访问及IO加速,并支持大数据、搜索和AI多引擎对接。本文为您介绍以Flink作为Openlake方案的核心计算引擎,通过流式数据湖仓Paimon(使用DLF 2.0存储)和EMR StarRocks搭建流式湖仓。
474 5
基于OpenLake的Flink+Paimon+EMR StarRocks流式湖仓分析
|
3月前
|
存储 数据采集 大数据
Flink实时湖仓,为汽车行业数字化加速!
本文由阿里云计算平台产品专家李鲁兵(云觉)分享,聚焦汽车行业大数据应用。内容涵盖市场趋势、典型大数据架构、产品市场地位及能力解读,以及典型客户案例。文章详细介绍了新能源汽车市场的快速增长、大数据架构分析、实时湖仓方案的优势,以及Flink和Paimon在车联网中的应用案例。
206 8
Flink实时湖仓,为汽车行业数字化加速!
|
2月前
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
78 1
|
3月前
|
分布式计算 监控 大数据
大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu
大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu
91 1
|
3月前
|
弹性计算 缓存 搜索推荐
大数据个性化推荐,AWS终端用户解决方案
大数据个性化推荐,AWS终端用户解决方案

相关产品

  • 实时计算 Flink版