Pytorch基于迁移学习的Alexnet卷积神经网络-手撕(可直接运行)-部分地方不懂的可以参考我上一篇手撕Alexnet神经网络的注释 两个基本一样 只是这个网络是迁移过来的

简介: Pytorch基于迁移学习的Alexnet卷积神经网络-手撕(可直接运行)-部分地方不懂的可以参考我上一篇手撕Alexnet神经网络的注释 两个基本一样 只是这个网络是迁移过来的
import torch
import torchvision
import torchvision.models
from PIL import Image
from matplotlib import pyplot as plt
from tqdm import tqdm
from torch import nn
from torch.utils.data import DataLoader
from torchvision.transforms import transforms
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
toPIL = transforms.ToPILImage()  # 将图像数据转换为PIL格式
trans = transforms.Compose([transforms.Resize((120, 120)),  # 将图像统一调整为120*120大小
                            transforms.ToTensor()])  # 将图像数据转换为张量
train_data = torchvision.datasets.CIFAR10(root="./data", train=True, download=True,  # 导入CIFAR10数据集的训练集
                                          transform=trans)
traindata = DataLoader(dataset=train_data, batch_size=32, shuffle=True, num_workers=0)  # 将训练数据以每次32张图片的形式抽出进行训练
test_data = torchvision.datasets.CIFAR10(root="./data", train=False, download=False,  # 导入CIFAR10数据集的测试集
                                         transform=trans)
train_size = len(train_data)  # 训练集的长度
test_size = len(test_data)  # 测试集的长度
print(train_size)
print(test_size)
testdata = DataLoader(dataset=test_data, batch_size=32, shuffle=True, num_workers=0)  # 将训练数据以每次32张图片的形式抽出进行测试
alexnet1 = torchvision.models.alexnet(pretrained = True)   #下载预训练模型
alexnet1.add_module("linear",nn.Linear(1000 , 10))  #在预训练模型的最后一层再加上一层全连接层进行训练微调,因为本数据集是10种 而且与训练模型都是在imagenet数据集上训练的 是1000种的输出
test1 = torch.ones(64, 3, 120, 120)  # 测试一下输出的形状大小
#其他地方跟alexnet的代码一样
test1 = alexnet1(test1)
print(test1.shape)
epoch = 10  # 迭代次数
learning = 0.0001  # 学习率
optimizer = torch.optim.Adam(alexnet1.parameters(), lr=learning)  # 使用Adam优化器
loss = nn.CrossEntropyLoss()  # 损失计算方式,交叉熵
train_loss_all = []  # 存放训练集损失的数组
train_accur_all = []  # 存放训练集准确率的数组
test_loss_all = []  # 存放测试集损失的数组
test_accur_all = []  # 存放测试集准确率的数组
for i in range(epoch):
    train_loss = 0
    train_num = 0.0
    train_accuracy = 0.0
    alexnet1.train()
    train_bar = tqdm(traindata)
    for step, data in enumerate(train_bar):
        img, target = data
        optimizer.zero_grad()  # 清空历史梯度
        outputs = alexnet1(img)  # 将图片打入网络进行训练
        loss1 = loss(outputs, target)
        outputs = torch.argmax(outputs, 1)
        loss1.backward()
        optimizer.step()
        train_loss += abs(loss1.item()) * img.size(0)
        accuracy = torch.sum(outputs == target)
        train_accuracy = train_accuracy + accuracy
        train_num += img.size(0)
    print("epoch:{} , train-Loss:{} , train-accuracy:{}".format(i + 1, train_loss / train_num,
                                                                train_accuracy / train_num))
    train_loss_all.append(train_loss / train_num)
    train_accur_all.append(train_accuracy.double().item() / train_num)
    test_loss = 0
    test_accuracy = 0.0
    test_num = 0
    alexnet1.eval()
    with torch.no_grad():
        test_bar = tqdm(testdata)
        for data in test_bar:
            img, target = data
            outputs = alexnet1(img)
            loss2 = loss(outputs, target)
            outputs = torch.argmax(outputs, 1)
            test_loss = test_loss + abs(loss2.item()) * img.size(0)
            accuracy = torch.sum(outputs == target)
            test_accuracy = test_accuracy + accuracy
            test_num += img.size(0)
    print("test-Loss:{} , test-accuracy:{}".format(test_loss / test_num, test_accuracy / test_num))
    test_loss_all.append(test_loss / test_num)
    test_accur_all.append(test_accuracy.double().item() / test_num)
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(range(epoch), train_loss_all,
         "ro-", label="Train loss")
plt.plot(range(epoch), test_loss_all,
         "bs-", label="test loss")
plt.legend()
plt.xlabel("epoch")
plt.ylabel("Loss")
plt.subplot(1, 2, 2)
plt.plot(range(epoch), train_accur_all,
         "ro-", label="Train accur")
plt.plot(range(epoch), test_accur_all,
         "bs-", label="test accur")
plt.xlabel("epoch")
plt.ylabel("acc")
plt.legend()
plt.show()
torch.save(alexnet1, "xiaozhai.pth")
print("模型已保存")
相关文章
|
24天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
149 7
|
1月前
|
弹性计算 监控 数据库
制造企业ERP系统迁移至阿里云ECS的实例,详细介绍了从需求分析、数据迁移、应用部署、网络配置到性能优化的全过程
本文通过一个制造企业ERP系统迁移至阿里云ECS的实例,详细介绍了从需求分析、数据迁移、应用部署、网络配置到性能优化的全过程,展示了企业级应用上云的实践方法与显著优势,包括弹性计算资源、高可靠性、数据安全及降低维护成本等,为企业数字化转型提供参考。
56 5
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
本文旨在通过深入浅出的方式,为读者揭示卷积神经网络(CNN)的神秘面纱,并展示其在图像识别领域的实际应用。我们将从CNN的基本概念出发,逐步深入到网络结构、工作原理以及训练过程,最后通过一个实际的代码示例,带领读者体验CNN的强大功能。无论你是深度学习的初学者,还是希望进一步了解CNN的专业人士,这篇文章都将为你提供有价值的信息和启发。
|
1月前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
1月前
|
编解码 安全 Linux
网络空间安全之一个WH的超前沿全栈技术深入学习之路(10-2):保姆级别教会你如何搭建白帽黑客渗透测试系统环境Kali——Liinux-Debian:就怕你学成黑客啦!)作者——LJS
保姆级别教会你如何搭建白帽黑客渗透测试系统环境Kali以及常见的报错及对应解决方案、常用Kali功能简便化以及详解如何具体实现
|
1月前
|
安全 网络协议 算法
网络空间安全之一个WH的超前沿全栈技术深入学习之路(8-1):主动信息收集之ping、Nmap 就怕你学成黑客啦!
网络空间安全之一个WH的超前沿全栈技术深入学习之路(8-1):主动信息收集之ping、Nmap 就怕你学成黑客啦!
|
1月前
|
网络协议 安全 NoSQL
网络空间安全之一个WH的超前沿全栈技术深入学习之路(8-2):scapy 定制 ARP 协议 、使用 nmap 进行僵尸扫描-实战演练、就怕你学成黑客啦!
scapy 定制 ARP 协议 、使用 nmap 进行僵尸扫描-实战演练等具体操作详解步骤;精典图示举例说明、注意点及常见报错问题所对应的解决方法IKUN和I原们你这要是学不会我直接退出江湖;好吧!!!
网络空间安全之一个WH的超前沿全栈技术深入学习之路(8-2):scapy 定制 ARP 协议 、使用 nmap 进行僵尸扫描-实战演练、就怕你学成黑客啦!
|
1月前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第32天】本文将介绍深度学习中的一个重要分支——卷积神经网络(CNN),以及其在图像识别领域的应用。我们将通过一个简单的代码示例,展示如何使用Python和TensorFlow库构建一个基本的CNN模型,并对其进行训练和测试。

热门文章

最新文章