RSA算法理论学习解惑――复制粘贴RSA私钥导致tengine出错深入解析

本文涉及的产品
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介: tengine的代码中使用了RSA_check_key函数进行RSA私钥格式正确性检查,有一次加载私钥测试时tengine reload失败。案例的看点是RSA格式私钥文件中的私钥指数d在tengine实际的加解密计算过程中并没有用到,至于为什么请细看下文。

原创文章:来自RSA算法理论学习解惑――复制粘贴RSA私钥导致tengine出错深入解析

tengine的代码中使用了RSA_check_key函数进行RSA私钥格式正确性检查,有一次加载私钥测试时tengine reload失败。案例的看点是RSA格式私钥文件中的私钥指数d在tengine实际的加解密计算过程中并没有用到,至于为什么请细看下文。

问题背景

在一次配置tengine https服务使用的证书和私钥操作时采用了从原文件复制粘贴的方式,当使用tengine启动服务时提示出错:

$tengine -c tengine.conf –t

nginx: [emerg] RSA private key broken: /xxxx/4ed20dc594d0d75926f517d2b29879e2
140319033337512:error:0407B07B:rsa routines:RSA_check_key:d e not congruent to 1:rsa_chk.c:175:
140319033337512:error:0407B07C:rsa routines:RSA_check_key:dmp1 not congruent to d:rsa_chk.c:194:
140319033337512:error:0407B07D:rsa routines:RSA_check_key:dmq1 not congruent to d:rsa_chk.c:212:

关键性提示背后的含义未知。
d e not congruent to 1
dmp1 not congruent to d
dmq1 not congruent to d

原因分析

排查过程中疑问如下:

  1. 从上述提示可以得知rsa_chk.c的行数,从而找到调用来源是tengine中RSA_check_key函数,
    if (RSA_check_key(pkey) != 1) {
        ngx_log_error(NGX_LOG_EMERG, ctx->log, 0,
                      "RSA private key broken: %V", name);
        ERR_print_errors_fp(stderr);
        RSA_free(pkey);
        ret = NGX_ABORT;
        goto out;
    }
  1. 排查此用户的证书与私钥的正确性,首先查看私钥的格式与输出:
  2. rsa -in 111.pem –text 测试正常没有错误
$openssl s_server -accept 9999 -cert cert.crt -key 111.pem 
Using default temp DH parameters
Using default temp ECDH parameters

然后用curl访问https://127.0.0.1:9999端口后, 上述openssl s_server服务打印输出如下:

ACCEPT

GET / HTTP/1.1
User-Agent: curl/7.29.0
Host: localhost:9999
Accept: */*

即ssl握手过程中用到证书与私钥能验证通过!应该能说明证书与私钥确实是配对的。这不可能太奇怪了?!
最后用openssl rsa -in 111.pem –check 才发现有问题。到底是什么原因tengine 判断私钥有问题?本着刨根问底的精神,联系了做openssl的几个同事,暂时也没有人对这块有深入的研究。只能自己动手分析了。

首先查openssl中出错时的代码块

/* d*e = 1  mod lcm(p-1,q-1)? */
173     if (!BN_is_one(i)) {
174         ret = 0;
175         RSAerr(RSA_F_RSA_CHECK_KEY, RSA_R_D_E_NOT_CONGRUENT_TO_1);
176     }

使用d和q参数计算 dmq1,然后与私钥文件中解出的dmq1比对查看是否正确.

197         /* dmq1 = d mod (q-1)? */
198         r = BN_sub(i, key->q, BN_value_one());
199         if (!r) {
200             ret = -1;
201             goto err;
202         }
203 
204         r = BN_mod(j, key->d, i, ctx);
205         if (!r) {
206             ret = -1;
207             goto err;
208         }
209 
210         if (BN_cmp(j, key->dmq1) != 0) {
211             ret = 0;
212             RSAerr(RSA_F_RSA_CHECK_KEY, RSA_R_DMQ1_NOT_CONGRUENT_TO_D);
213         }

细节分析

看来必须搞清楚这几个参数的含义,但要搞清楚这几个参数的作用需要了解rsa加解密的原理,建议先读“RSA算法原理(二)”
http://www.ruanyifeng.com/blog/2013/07/rsa_algorithm_part_two.html

这几个参数在openssl中具体定义是

struct crypto_rsa_key {
    int private_key; /* whether private key is set */
    struct bignum *n; /* modulus (p * q) */
    struct bignum *e; /* public exponent */
    /* The following parameters are available only if private_key is set */
    struct bignum *d; /* private exponent */
    struct bignum *p; /* prime p (factor of n) */
    struct bignum *q; /* prime q (factor of n) */
    struct bignum *dmp1; /* d mod (p - 1); CRT exponent */
    struct bignum *dmq1; /* d mod (q - 1); CRT exponent */
    struct bignum *iqmp; /* 1 / q mod p; CRT coefficient */
};

我以个人理解简单点来解释:公钥可以用n和e代表,私钥可以用n和d代表;且n=p*q算出,e和d需要满足 ed ≡ 1 (mod φ(n)),其中φ(n)代表n的欧拉函数;私钥文件中有了这几个参数完全可以实现用来私钥解密和签名等功能了。以m代表明文,c代表密文,所谓"加密"过程,就是算出下式的c:
me ≡ c (mod n)
所谓解密就是c的d次方除以n的余数为m:
cd ≡ m (mod n)

但是直接用n d大数来直接使用存在效率不高的问题,然后就有数学大牛们引入了新的算法-中国余数定理,用于解决效率的问题(本文简称为RSA-CRT算法)。解密和签名的过程就改为了 

https://w1.fi/cgit/hostap/plain/src/tls/rsa.c
/*
* Decrypt (or sign) using Chinese remainer theorem to speed
* up calculation. This is equivalent to tmp = tmp^d mod n
* (which would require more CPU to calculate directly).
*
* dmp1 = (1/e) mod (p-1)
* dmq1 = (1/e) mod (q-1)
* iqmp = (1/q) mod p, where p > q
* m1 = c^dmp1 mod p
* m2 = c^dmq1 mod q
* h = q^-1 (m1 - m2) mod p
* m = m2 + hq
*/

即RSA-CRT算法只需要5个元素就可以完成模幂运算,不需要用到d.现在也可以清楚了上述crypto_rsa_key结构中最后参数的含义了,即用于RSA-CRT计算用的,且dmp1 dmq1也可以通过d计算得到。

一个RSA私钥文件中的内容解析如下:

$openssl rsa -in serverkey.pem -text
Private-Key: (2048 bit)
modulus:
    00:e3:b7:cb:15:a0:92:a2:0f:10:25:a4:cd:a8:2f:
    24:95:d2:65:e1:3f:cf:4d:87:64:52:f8:d9:f9:dc:
    …………

publicExponent: 65537 (0x10001)
privateExponent:
    6b:39:60:c4:07:3e:e4:56:29:69:40:47:a2:38:c8:
    86:4f:72:af:74:87:5d:5f:32:2b:2b:88:1f:f2:17:
    ……。

prime1:
    00:ff:6a:2f:e3:fb:6c:3c:65:e9:03:0e:0e:8f:4b:
    65:9b:26:8d:22:39:07:26:e5:ca:cc:b2:79:05:4e:
   …………
prime2:
    00:e4:3d:5c:57:35:26:39:18:ab:ba:c4:91:45:cd:
    77:9a:f9:93:75:12:3b:50:d7:53:0b:ee:17:57:70:
    …………
exponent1:
    00:c9:f5:c0:0a:88:6a:ec:53:34:ed:6a:77:0e:cd:
    72:79:3d:01:8a:17:07:d5:b5:0c:27:d1:d3:a9:e3:
    …………
exponent2:
    69:42:23:23:d4:cf:1b:e5:d4:cc:fd:7a:41:c6:d0:
    32:18:87:78:a6:3f:d4:b8:79:04:37:79:6c:49:d0:
    …………
coefficient:
    00:c0:7a:72:d3:fe:81:de:de:3d:21:21:cc:c2:20:
    a0:0e:2e:d2:91:1f:af:b3:89:a2:12:50:88:2c:c6:
    …………
writing RSA key

从上可以看出所有的参数都包含在私钥文件中。

现在可以理解RSA_check_key(pkey) 函数为什么出错了:即拿到私钥文件中dmp1,dmq1,d用公式计算他们的关系发现结果不一致所以报错了。
与原文件正确的私钥经过对比发现有一个字符出错,下图中101行代表原始的pem格式私钥数据C13改为了C12,第32行是经过转换后的数据,
0610_1

查32行得知属于privateExponent部分,即属于私钥元素d

0610_2

到此本该结束了,但还有一个疑问为什么nginx与 openssl s_server都没有出错,追了一下openssl代码
0610_3

rsa->meth->rsa_mod_exp()最后调用 RSA_eay_mod_exp()此函数实现解密没有用到d参数。
nginx与 openssl s_server都没有调用RSA_check_key函数,而tengine做加载私钥用到了RSA_check_key函数。
推断openssl rsa -in 111.pem –check应该也用到了此RSA_check_key函数

小结

主要是需要对RSA私钥文件中各参数的作用需要详细了解,由于需要数论原理很多,理解openssl代码难度还是很高的,搞了几个小时终于搞明白了原理。

目录
相关文章
|
1月前
|
算法 前端开发 数据处理
小白学python-深入解析一位字符判定算法
小白学python-深入解析一位字符判定算法
48 0
|
1月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
44 3
|
1月前
|
搜索推荐 算法
插入排序算法的平均时间复杂度解析
【10月更文挑战第12天】 插入排序是一种简单直观的排序算法,通过不断将未排序元素插入到已排序部分的合适位置来完成排序。其平均时间复杂度为$O(n^2)$,适用于小规模或部分有序的数据。尽管效率不高,但在特定场景下仍具优势。
|
21天前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
59 4
|
22天前
|
缓存 负载均衡 算法
Linux内核中的进程调度算法解析####
本文深入探讨了Linux操作系统核心组件之一——进程调度器,着重分析了其采用的CFS(完全公平调度器)算法。不同于传统摘要对研究背景、方法、结果和结论的概述,本文摘要将直接揭示CFS算法的核心优势及其在现代多核处理器环境下如何实现高效、公平的资源分配,同时简要提及该算法如何优化系统响应时间和吞吐量,为读者快速构建对Linux进程调度机制的认知框架。 ####
|
1月前
|
前端开发 算法 JavaScript
无界SaaS模式深度解析:算力算法、链接力、数据确权制度
私域电商的无界SaaS模式涉及后端开发、前端开发、数据库设计、API接口、区块链技术、支付和身份验证系统等多个技术领域。本文通过简化框架和示例代码,指导如何将核心功能转化为技术实现,涵盖用户管理、企业店铺管理、数据流量管理等关键环节。
|
1月前
|
机器学习/深度学习 算法 PyTorch
Pytorch-SGD算法解析
SGD(随机梯度下降)是机器学习中常用的优化算法,特别适用于大数据集和在线学习。与批量梯度下降不同,SGD每次仅使用一个样本来更新模型参数,提高了训练效率。本文介绍了SGD的基本步骤、Python实现及PyTorch中的应用示例。
42 0
|
1月前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
9天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
17天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。

推荐镜像

更多
下一篇
无影云桌面