机器学习:kNN近邻算法

简介: K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。

kNN1

描述

上图中,绿色圆要被决定赋予哪个类,是红色三角形还是蓝色四方形?如果K=3,由于红色三角形所占比例为2/3,绿色圆将被赋予红色三角形那个类,如果K=5,由于蓝色四方形比例为3/5,因此绿色圆被赋予蓝色四方形类。

K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。 KNN方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关。由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。

KNN算法不仅可以用于分类,还可以用于回归。通过找出一个样本的k个最近邻居,将这些邻居的属性的平均值赋给该样本,就可以得到该样本的属性。更有用的方法是将不同距离的邻居对该样本产生的影响给予不同的权值(weight),如权值与距离成反比。

算法流程

在KNN中,通过计算对象间距离来作为各个对象之间的非相似性指标,避免了对象之间的匹配问题,在这里距离一般使用欧氏距离或曼哈顿距离:

同时,KNN通过依据k个对象中占优的类别进行决策,而不是单一的对象类别决策。这两点就是KNN算法的优势。

接下来对KNN算法的思想总结一下:就是在训练集中数据和标签已知的情况下,输入测试数据,将测试数据的特征与训练集中对应的特征进行相互比较,找到训练集中与之最为相似的前K个数据,则该测试数据对应的类别就是K个数据中出现次数最多的那个分类,其算法的描述为:

1)计算测试数据与各个训练数据之间的距离;

2)按照距离的递增关系进行排序;

3)选取距离最小的K个点;

4)确定前K个点所在类别的出现频率;

5)返回前K个点中出现频率最高的类别作为测试数据的预测分类。

源码示例

python

# coding=utf-8

'''
1)计算测试数据与各个训练数据之间的距离;

2)按照距离的递增关系进行排序;

3)选取距离最小的K个点;

4)确定前K个点所在类别的出现频率;

5)返回前K个点中出现频率最高的类别作为测试数据的预测分类。
'''

import numpy as np

##给出训练数据以及对应的类别
def createDataSet():
    group = np.array([[1.0,2.0],[1.2,0.1],[0.1,1.4],[0.3,3.5]])
    labels = ['A','A','B','B']
    return group,labels

###通过KNN进行分类
def classify(input,dataSet,label,k):
    datasize = dataSet.shape[0]
    # 计算欧式距离
    dis = np.zeros( datasize , dtype=float)
    for i in range( datasize ):
        dis[i] = np.linalg.norm( (input - dataSet[i])*(input - dataSet[i]).T )

    # 对距离排序
    sortedindex = np.argsort(dis)

    # 累计label次数
    classcount = {}
    for i in range(k):
        vote = labels[sortedindex[i]]
        classcount[vote] = classcount.get(vote,0)+1
    # 对map的value排序
    sortedclass = sorted(classcount.items(),lambda x,y: cmp(x[1] , y[1]),reverse=True)
    return sortedclass[0][0]

dataSet, labels = createDataSet()
input = np.array([1.1, 0.3])
K = 3
output = classify(input, dataSet, labels, K)
print "测试数据为:", input, "分类结果为:", output

output:

测试数据为: [ 1.1  0.3] 分类结果为: A
相关文章
|
3天前
|
机器学习/深度学习 算法 TensorFlow
机器学习算法简介:从线性回归到深度学习
【5月更文挑战第30天】本文概述了6种基本机器学习算法:线性回归、逻辑回归、决策树、支持向量机、随机森林和深度学习。通过Python示例代码展示了如何使用Scikit-learn、statsmodels、TensorFlow库进行实现。这些算法在不同场景下各有优势,如线性回归处理连续值,逻辑回归用于二分类,决策树适用于规则提取,支持向量机最大化类别间隔,随机森林集成多个决策树提升性能,而深度学习利用神经网络解决复杂模式识别问题。理解并选择合适算法对提升模型效果至关重要。
16 4
|
1天前
|
机器学习/深度学习 数据采集 存储
【机器学习】K-近邻算法(KNN)全面解析
K-近邻算法(K-Nearest Neighbors, KNN)是一种基于实例的学习方法,属于监督学习范畴。它的工作原理简单直观:给定一个训练数据集,对新的输入实例,KNN算法通过计算其与训练集中每个实例的距离,找出距离最近的K个邻居,然后根据这些邻居的类别(对于分类任务)或值(对于回归任务)来预测新实例的类别或值。KNN因其简单高效和无需训练过程的特点,在众多领域中得到广泛应用,如模式识别、推荐系统、图像分类等。
5 0
|
2天前
|
机器学习/深度学习 算法
探索机器学习中的支持向量机(SVM)算法
【5月更文挑战第31天】 在数据科学的广阔天地中,支持向量机(SVM)以其卓越的性能和强大的理论基础脱颖而出。本文将深入剖析SVM的工作原理、核心概念以及实际应用,旨在为读者提供一个清晰的理解视角,并通过实例演示其在分类问题中的有效性。我们将从线性可分的情况出发,逐步过渡到非线性问题的处理方法,并探讨如何通过调整参数来优化模型的性能。
|
3天前
|
机器学习/深度学习 Web App开发 算法
Python 机器学习算法交易实用指南(一)(5)
Python 机器学习算法交易实用指南(一)
11 2
|
3天前
|
传感器 机器学习/深度学习 存储
Python 机器学习算法交易实用指南(一)(4)
Python 机器学习算法交易实用指南(一)
13 4
|
3天前
|
机器学习/深度学习 算法 API
Python 机器学习算法交易实用指南(一)(3)
Python 机器学习算法交易实用指南(一)
14 4
|
18天前
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
112 14
|
18天前
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
|
18天前
|
机器学习/深度学习 算法 数据可视化
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
38 1
|
18天前
|
机器学习/深度学习 数据采集 算法
解码癌症预测的密码:可解释性机器学习算法SHAP揭示XGBoost模型的预测机制
解码癌症预测的密码:可解释性机器学习算法SHAP揭示XGBoost模型的预测机制
170 0