pylustrator让Matplotlib参数修改更简单

简介: pylustrator让Matplotlib参数修改更简单

pylustrator安装

pip install pylustrator

pylustrator使用

只需要导入pylustrator,开启pylustrator即可,添加两行代码:

# 导入pylustrator 
import pylustrator 
# 开启pylustrator 
pylustrator.start()

举个例子,

import numpy as np
import matplotlib.pyplot as plt 
import pylustrator  
pylustrator.start() #开启pylustrator
def f(t):
    return np.exp(-t) * np.cos(2 * np.pi * t)
t1 = np.arange(0.0, 5.0, 0.1)
t2 = np.arange(0.0, 5.0, 0.02)
plt.style.use('ggplot')
plt.subplot(211)
plt.plot(t1, f(t1), color='tab:blue', marker='o')
plt.plot(t2, f(t2), color='black')
plt.subplot(212)
plt.plot(t2, np.cos(2 * np.pi * t2), color='tab:orange', linestyle='--')
plt.show()

相关文章
|
6月前
|
数据可视化 数据挖掘 Python
【数据分析与可视化】Matplotlib中动态rc参数设置详解与实战(图文解释 附源码)
【数据分析与可视化】Matplotlib中动态rc参数设置详解与实战(图文解释 附源码)
271 0
|
4月前
|
数据可视化 Linux 数据格式
`seaborn`是一个基于`matplotlib`的Python数据可视化库,它提供了更高级别的接口来绘制有吸引力的和信息丰富的统计图形。`seaborn`的设计目标是使默认图形具有吸引力,同时允许用户通过调整绘图参数来定制图形。
`seaborn`是一个基于`matplotlib`的Python数据可视化库,它提供了更高级别的接口来绘制有吸引力的和信息丰富的统计图形。`seaborn`的设计目标是使默认图形具有吸引力,同时允许用户通过调整绘图参数来定制图形。
|
数据可视化 算法 定位技术
Python数据可视化matplotlib和pyecharts参数详解
Python数据可视化matplotlib和pyecharts参数详解
224 0
|
Python
matplotlib关于坐标轴数据显示的几个重要参数
在使用matplotlib显示数据的过程中,我在显示的时候一直达不到满意的效果,经过很多的百度和查询,先整理了这些知识点,留备以后再继续扩充。
457 0
matplotlib关于坐标轴数据显示的几个重要参数
Py之matplotlib:matplotlib绘图中与颜色相关的参数(color颜色参数、linestyle线型参数、marker标记参数)可选列表集合(建议收藏)
Py之matplotlib:matplotlib绘图中与颜色相关的参数(color颜色参数、linestyle线型参数、marker标记参数)可选列表集合(建议收藏)
Py之matplotlib:matplotlib绘图中与颜色相关的参数(color颜色参数、linestyle线型参数、marker标记参数)可选列表集合(建议收藏)
Py之matplotlib:matplotlib绘图中与颜色相关的参数(color颜色参数、linestyle线型参数、marker标记参数)可选列表集合(建议收藏)(一)
Py之matplotlib:matplotlib绘图中与颜色相关的参数(color颜色参数、linestyle线型参数、marker标记参数)可选列表集合(建议收藏)(一)
Py之matplotlib:matplotlib绘图中与颜色相关的参数(color颜色参数、linestyle线型参数、marker标记参数)可选列表集合(建议收藏)(一)
Py之matplotlib:matplotlib绘图中与颜色相关的参数(color颜色参数、linestyle线型参数、marker标记参数)可选列表集合(建议收藏)(二)
Py之matplotlib:matplotlib绘图中与颜色相关的参数(color颜色参数、linestyle线型参数、marker标记参数)可选列表集合(建议收藏)(二)

热门文章

最新文章