【机器学习】解决机器学习中OneVsRestClassifier的网格调参Invalid parameter max_depth for estimator OneVsRestClassifier

简介: 文章介绍了如何使用XGBClassifier和OneVsRestClassifier进行网格搜索调参,以找到最佳的模型参数。

简单模型网格调参

from xgboost import XGBClassifier
from sklearn.multiclass import OneVsRestClassifier
from sklearn.model_selection import train_test_split,GridSearchCV
param_test1 = {'max_depth':range(3,10,2),'min_child_weight':range(1,6,2)}

model = XGBClassifier(eval_metric= 'mlogloss',
                                        use_label_encoder=False,
                                        learning_rate =0.1,
                                        n_estimators=100,
                                        gamma=0,
                                        subsample=0.8,
                                        colsample_bytree=0.8,
                                        nthread=4,
                                        scale_pos_weight=1,
                                        seed=27,
                                        verbose=True)
gsearch1 = GridSearchCV(model,param_grid = param_test1,scoring='roc_auc',n_jobs=20, cv=5,verbose=2)
gsearch1.fit(X_train, y_train)
print("最佳参数\n",gsearch1.best_params_)
print("最佳得分",gsearch1.best_score_)

使用OneVsRestClassifier的调参

需要在每个参数面前加上estimator__

param_test1 = {'estimator__max_depth':range(3,10,2),'estimator__min_child_weight':range(1,6,2)}

model = OneVsRestClassifier(XGBClassifier(eval_metric= 'mlogloss',
                                        use_label_encoder=False,
                                        learning_rate =0.1,
                                        n_estimators=100,
                                        gamma=0,
                                        subsample=0.8,
                                        colsample_bytree=0.8,
                                        nthread=4,
                                        scale_pos_weight=1,
                                        seed=27,
                                        verbose=True))
    gsearch1 = GridSearchCV(model,param_grid = param_test1,scoring='roc_auc',n_jobs=20, cv=5,verbose=2)
    gsearch1.fit(X_train, y_train)
print("最佳参数\n",gsearch1.best_params_)
print("最佳得分",gsearch1.best_score_)
目录
相关文章
|
机器学习/深度学习 分布式计算 自然语言处理
Spark机器学习管道 - Estimator
Spark机器学习管道 - Estimator
|
机器学习/深度学习 存储 负载均衡
分布式机器学习(Parameter Server)
分布式机器学习(Parameter Server)
404 0
|
1月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
99 4
|
9天前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
25 2
|
27天前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
44 1
|
1月前
|
机器学习/深度学习 自然语言处理 算法
深入理解机器学习算法:从线性回归到神经网络
深入理解机器学习算法:从线性回归到神经网络
|
1月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
97 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
1月前
|
机器学习/深度学习 算法
深入探索机器学习中的决策树算法
深入探索机器学习中的决策树算法
41 0
|
1月前
|
机器学习/深度学习 算法 Python
机器学习入门:理解并实现K-近邻算法
机器学习入门:理解并实现K-近邻算法
36 0

热门文章

最新文章