vue2 原理【详解】MVVM、响应式、模板编译、虚拟节点 vDom、diff 算法

简介: vue2 原理【详解】MVVM、响应式、模板编译、虚拟节点 vDom、diff 算法

vue 的设计模式 —— MVVM

  • M —— Model 模型,即数据
  • V —— View 视图,即DOM渲染
  • VM —— ViewModel 视图模型,用于实现Model和View的通信,即数据改变驱动视图渲染,监听视图事件修改数据

初次渲染

  1. 将模板编译为 render 函数 ( webpack 中使用的 vue-loader 插件在开发环境启动项目时会完成编译)
  2. 触发响应式,监听 data 属性触发 getter 和 setter 方法 (主要是getter 方法)
  3. 执行 render 函数,生成 vnode ,执行 patch(elem, vnode) 完成 DOM 渲染

更新过程【需会画和讲解图】

  1. 修改 data,触发 setter 方法
  2. 重新执行 render 函数,生成 newVnode
  3. 执行 patch(vnode,newVnode) 更新发生变化的 DOM 节点

【重点】异步渲染

vue 的更新过程,是一种异步渲染,即并不是每一点 data 的改变都会立马触发视图更新, 而是会汇总 data 的修改,再一次性更新视图,这样可以减少 DOM 的操作次数,提高性能。

vue 原理的三大核心

一、响应式

vue 的响应式机制是在vue 实例初始化时建立的,即 data 函数中定义的变量,在页面初始化后,都具有响应式对于vue 实例初始化之后新增的属性,不具有响应式,解决方案是改用 $set 的方式新增属性。

监听 data 的变化

【核心】 API-Object.defineProperty

此时只能监听到对象的第一层属性,而无法实现更深层次属性变化的监听。

实现深度监听

  • 深层对象属性的监听,通过递归遍历深层对象的属性实现
  • 深层数组的监听,通过变更数组原型(为所有改变数组的 api 中加入更新视图),再递归遍历深层数组实现。
// 触发更新视图
function updateView() {
  console.log("视图更新");
}

// 重新定义数组原型
const oldArrayProperty = Array.prototype;
// 创建新对象,原型指向 oldArrayProperty ,再扩展新的方法不会影响原型
const arrProto = Object.create(oldArrayProperty);
["push", "pop", "shift", "unshift", "splice"].forEach((methodName) => {
  arrProto[methodName] = function () {
    updateView(); // 触发视图更新
    oldArrayProperty[methodName].call(this, ...arguments);
  };
});

// 重新定义属性,监听起来
function defineReactive(target, key, value) {
  // 深度监听
  observer(value);

  // 核心 API
  Object.defineProperty(target, key, {
    get() {
      return value;
    },
    set(newValue) {
      if (newValue !== value) {
        // 深度监听
        observer(newValue);

        // 设置新值
        // 注意,value 一直在闭包中,此处设置完之后,再 get 时会获取最新的值
        value = newValue;

        // 触发更新视图
        updateView();
      }
    },
  });
}

// 监听对象属性
function observer(target) {
  // 不是对象或数组,无需深度监听
  if (typeof target !== "object" || target === null) {
    return target;
  }

  // 若是数组,则修改为自定义的添加了视图刷新的数组原型
  if (Array.isArray(target)) {
    target.__proto__ = arrProto;
  }

  // 重新定义各个属性(for in 也可以遍历数组)
  for (let key in target) {
    defineReactive(target, key, target[key]);
  }
}

// 准备数据
const data = {
  name: "张三",
  age: 20,
  info: {
    address: "北京", // 需要深度监听
  },
  nums: [10, 20, 30], // 需要深度监听
};

// 监听数据
observer(data);

// 测试
data.name = "李四"; // 无需深度监听
data.age = 21; // 无需深度监听
data.x = "100"; // 新增属性,监听不到 —— 需用 Vue.set
delete data.name; // 删除属性,监听不到 —— 需用 Vue.delete
data.info.address = "上海"; // 对象属性的属性,需要深度监听
data.nums.push(4); // 数组需要深度监听

Object.defineProperty 的缺点

  • 深度监听,需要递归到底,一次性计算量大
  • 无法监听属性的新增和删除,这会导致以下操作无响应式:
  • 对象新增属性
  • 对象删除属性
  • 通过数组下标修改数组元素的值
  • 修改数组的长度

为了弥补以上操作无响应式的缺陷,vue 补充了 set 和 delete 方法。

Vue.set() 和 this.$set() 这两个api的实现原理基本一模一样,都是使用了set函数

$set 的响应式原理

this.$set(this.arr, "3", 7)

对于数组,$set 的参数为数组、数组下标、新的值,通过调用被 vue 改造过的添加了视图更新的 splice 方法实现响应式,相关vue 源码如下:

// 判断操作目标是否是数组,传入的数组下标是否规范
if (Array.isArray(target) && isValidArrayIndex(key)) {
  // 若传入的数组下标超过数组长度,则将数组长度增长为传入的下标,以防后续调用splice方法时因下标超出数组长度而报错。
  target.length = Math.max(target.length, key)
  // 使用添加了视图更新的 splice 方法实现响应式
  target.splice(key, 1, val)
  return val
 }
this.$set(this.obj, "新的属性", "新增的属性的值");
 
  • 对于对象,$set 的参数为对象、新的属性、新增的属性的值,通过对新增属性添加深度监听实现响应式,相关vue 源码如下:
// 判断如果key本来就是对象中的一个属性,并且key不是Object原型上的属性, 则此属性已添加过响应式,直接修改值即可。
 if (key in target && !(key in Object.prototype)) {
  target[key] = val
  return val
 }
 // 获取 target对象的 __ob__ 属性
 const ob = (target: any).__ob__
 // 若 target对象是vue实例对象或者是根数据对象,则抛出错误警告。
 if (target._isVue || (ob && ob.vmCount)) {
  process.env.NODE_ENV !== 'production' && warn(
   'Avoid adding reactive properties to a Vue instance or its root $data ' +
   'at runtime - declare it upfront in the data option.'
  )
  return val
 }
 // 若 target 对象的 __ob__ 属性不存在,则 target 不是响应式对象,无需添加响应式监听,直接新增属性赋值即可。( vue给响应式对象都加了 __ob__ 属性,如果一个对象有 __ob__ 属性,则说明这个对象是响应式对象)
 if (!ob) {
  target[key] = val
  return val
 }
 // 给新属性添加响应式监听
 defineReactive(ob.value, key, val)
 // 触发视图更新
 ob.dep.notify()
 return val

二、模板编译

vue 文件中支持指令、插值、JS 表达式,还能实现判断、循环,大大便捷了开发,但无法在浏览器中渲染,需要先将其转换成 JS 代码才行,这个转换的过程,即模板编译。

编译过程

  1. 借助插件 vue-template-compiler 将vue 文件编译成 render 函数
  2. 执行 render 函数,返回 vnode
  3. 基于 vnode 执行 patch 和 diff ,完成 DOM 渲染

演示代码

const compiler = require('vue-template-compiler')
const template = `<p>{{message}}</p>`
const res = compiler.compile(template)
console.log(res.render)

得到函数

with(this){return _c('p',[_v(_s(message))])}
  • _c 对应插件内定义的函数 createElement
  • _v 对应插件内定义的函数 createTextVNode
  • _s 对应插件内定义的函数 toString

即实现了模板向 JS 的转换。

with 语法

  • 改变 {} 内自由变量的查找规则,将其当做 obj 属性来查找
  • 如果找不到匹配的 obj 属性,就会报错
  • with 要慎用,它打破了作用域规则,易读性变差

编译形式

  • 在 webpack 中使用的 vue-loader 插件,在开发环境启动项目时,就完成了模板的编译(提升了渲染效率)
  • vue 组件可以用 template 写法,也可以直接用 render 函数(react 中全是 render 函数 )

三、虚拟节点 vDom

数据变化驱动视图更新,就需要执行DOM 操作重新渲染视图,但DOM 操作非常耗费性能,怎样提升性能呢?

解决思路:使用虚拟节点 vDom,即用 JS 模拟 DOM 结构,计算出最小的变更,更新 DOM。

因为 JS 的执行速度比DOM 操作快得多!

通过 h 函数生成 vnode

  • 初次渲染【增】
patch(container,vnode);

在目标容器中,渲染节点

  • 更新视图【改】
patch(vnode,newVnode);

用新节点,替代旧节点

只会重新渲染新旧节点中有差异的部分,不会重新渲染整个节点。

  • 销毁视图【删】
patch(newVnode,null);

用 null 替代目标节点

【核心】diff 算法

用于计算出 vDom 的最小变更(即比较出新旧 DOM 树的差异)

树 diff 的时间复杂度为 O(n^3)

  1. 遍历 tree1
  2. 遍历 tree2
  3. 排序

1000 个节点,要计算1亿次,算法不可用!

改用 diff 算法将时间复杂度降为 O(n)

  • 只比较同一层级,不跨级比较

  • tag 不相同,则直接删掉重建,不再深度比较

  • tag 和 key,两者都相同,则认为是相同节点,不再深度比较

  • 不使用key,则所有元素会先移除,再添加
    若使用key,则若存在未改变的元素,只需进行移动即可。
    若key 使用 index,则 key 的值为 0,1,2,3,4……,则若元素的顺序发生改变时,会出现问题。

相关的重要函数

  • patchVnode
  • addVnodes
  • removeVnodes
  • updatèChildren
目录
相关文章
|
14天前
|
算法 Java 数据处理
Java算法模板 数据流快读
Java算法模板 数据流快读
11 2
|
20天前
|
JavaScript 算法 前端开发
vue和react的diff算法的区别
vue和react的diff算法的区别
|
13天前
|
算法
【数据结构与算法 刷题系列】求带环链表的入环节点(图文详解)
【数据结构与算法 刷题系列】求带环链表的入环节点(图文详解)
|
13天前
|
算法 C语言
【数据结构与算法 经典例题】返回单链表的倒数第 k 个节点
【数据结构与算法 经典例题】返回单链表的倒数第 k 个节点
|
14天前
|
算法 前端开发 安全
C++算法模板
C++算法模板
15 0
|
3天前
|
机器学习/深度学习 算法 调度
Matlab|基于改进鲸鱼优化算法的微网系统能量优化管理matlab-源码
基于改进鲸鱼优化算法的微网系统能量管理源码实现,结合LSTM预测可再生能源和负荷,优化微网运行成本与固定成本。方法应用于冷热电联供微网,结果显示经济成本平均降低4.03%,提高经济效益。代码包括数据分段、LSTM网络定义及训练,最终展示了一系列运行结果图表。
|
8天前
|
算法 安全 数据库
基于结点电压法的配电网状态估计算法matlab仿真
**摘要** 该程序实现了基于结点电压法的配电网状态估计算法,旨在提升数据的准确性和可靠性。在MATLAB2022a中运行,显示了状态估计过程中的电压和相位估计值,以及误差随迭代变化的图表。算法通过迭代计算雅可比矩阵,结合基尔霍夫定律解决线性方程组,估算网络节点电压。状态估计过程中应用了高斯-牛顿或莱文贝格-马夸尔特法,处理量测数据并考虑约束条件,以提高估计精度。程序结果以图形形式展示电压幅值和角度估计的比较,以及估计误差的演变,体现了算法在处理配电网状态估计问题的有效性。
|
5天前
|
数据采集 存储 算法
基于BP算法的SAR成像matlab仿真
**摘要:** 基于BP算法的SAR成像研究,利用MATLAB2022a进行仿真。SAR系统借助相对运动合成大孔径,提供高分辨率图像。BP算法执行回波数据预处理、像素投影及图像重建,实现精确成像。优点是高精度和强适应性,缺点是计算量大、内存需求高。代码示例展示了回波生成、数据处理到插值显示的全过程。
|
12天前
|
机器学习/深度学习 自然语言处理 算法
m基于深度学习的OFDM+QPSK链路信道估计和均衡算法误码率matlab仿真,对比LS,MMSE及LMMSE传统算法
**摘要:** 升级版MATLAB仿真对比了深度学习与LS、MMSE、LMMSE的OFDM信道估计算法,新增自动样本生成、复杂度分析及抗频偏性能评估。深度学习在无线通信中,尤其在OFDM的信道估计问题上展现潜力,解决了传统方法的局限。程序涉及信道估计器设计,深度学习模型通过学习导频信息估计信道响应,适应频域变化。核心代码展示了信号处理流程,包括编码、调制、信道模拟、降噪、信道估计和解调。
38 8
|
6天前
|
算法 vr&ar
基于自适应波束成形算法的matlab性能仿真,对比SG和RLS两种方法
```markdown - MATLAB2022a中比较SG与RLS自适应波束成形算法。核心程序实现阵列信号处理,强化期望信号,抑制干扰。RLS以其高效计算权重,而SG则以简单和低计算复杂度著称。[12345] [6666666666] [777777] ```