通过Serverless Spark提交PySpark流任务的实践体验

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,1000CU*H 3个月
简介: EMR Serverless Spark服务是阿里云推出的一种全托管、一站式的数据计算平台,旨在简化大数据计算的工作流程,让用户更加专注于数据分析和价值提炼,而非基础设施的管理和运维。下面就跟我一起通过Serverless Spark提交PySpark流任务吧。

EMR Serverless Spark服务是阿里云推出的一种全托管、一站式的数据计算平台,旨在简化大数据计算的工作流程,让用户更加专注于数据分析和价值提炼,而非基础设施的管理和运维。下面就跟我一起通过Serverless Spark提交PySpark流任务吧。

前提条件

已创建工作空间,详情请参见创建工作空间

操作流程

步骤一:创建实时数据流集群并产生消息

  1. 在EMR on ECS页面,创建包含Kafka服务的实时数据流集群,详情请参见创建集群
  2. 登录EMR集群的Master节点,详情请参见登录集群
  3. 执行以下命令,切换目录。
cd /var/log/emr/taihao_exporter
  1. 执行以下命令,创建Topic。
# 创建名为taihaometrics的Topic,分区数10,副本因子2。
kafka-topics.sh --partitions 10 --replication-factor 2 --bootstrap-server core-1-1:9092 --topic taihaometrics --create
  1. 执行以下命令,发送消息。
# 使用kafka-console-producer发送消息到taihaometrics Topic。
tail -f metrics.log | kafka-console-producer.sh --broker-list core-1-1:9092 --topic taihaometrics

步骤二:新增网络连接

  1. 进入网络连接页面。
  1. 在EMR控制台的左侧导航栏,选择EMR Serverless > Spark
  2. Spark页面,单击目标工作空间名称。
  3. EMR Serverless Spark页面,单击左侧导航栏中的网络连接
  1. 网络连接页面,单击新增网络连接
  2. 新增网络连接对话框中,配置以下信息,单击确定

参数

说明

连接名称

输入新增连接的名称。例如,connection_to_emr_kafka。

专有网络

选择与EMR集群相同的专有网络。

如果当前没有可选择的专有网络,请单击创建专有网络,前往专有网络控制台创建,详情请参见创建和管理专有网络

交换机

选择与EMR集群部署在同一专有网络下的相同交换机。

如果当前可用区没有交换机,请单击虚拟交换机,前往专有网络控制台创建,详情请参见创建和管理交换机

  1. 状态显示为已成功时,表示新增网络连接成功。

步骤三:为EMR集群添加安全组规则

  1. 获取集群节点交换机的网段。
    您可以在节点管理页面,单击节点组名称,查看关联的交换机信息,然后登录专有网络管理控制台,在交换机页面获取交换机的网段。

  2. 添加安全组规则。
  1. 集群管理页面,单击目标集群的集群ID。
  2. 基础信息页面,单击集群安全组后面的链接。
  3. 在安全组规则页面,单击手动添加,填写端口范围和授权对象,然后单击保存

参数

说明

端口范围

填写9092端口。

授权对象

填写前一步骤中获取的指定交换机的网段。

重要

为防止被外部的用户攻击导致安全问题,授权对象禁止填写为0.0.0.0/0。


步骤四:上传JAR包至OSS

上传kafka.zip中的所有JAR包至OSS,上传操作可以参见简单上传

步骤五:上传资源文件

  1. 在EMR Serverless Spark页面,单击左侧导航栏中的资源上传
  2. 资源上传页面,单击上传文件
  3. 上传文件对话框中,单击待上传文件区域选择pyspark_ss_demo.py文件。

步骤六:新建并启动流任务

  1. 在EMR Serverless Spark页面,单击左侧的任务开发
  2. 单击新建
  3. 输入任务名称,新建一个Application(流任务) > PySpark类型的任务,然后单击确定
  4. 在新建的任务开发中,配置以下信息,其余参数无需配置,然后单击保存

参数

说明

主Python资源

选择前一个步骤中在资源上传页面上传的pyspark_ss_demo.py文件。

引擎版本

Spark的版本,详情请参见引擎版本介绍

运行参数

EMR集群core-1-1节点的内网IP地址。您可以在EMR集群的节点管理页面的Core节点组下查看。

Spark配置

Spark的配置信息。本文示例如下。

spark.jars oss://<yourBucket>/kafka-lib/commons-pool2-2.11.1.jar,oss://<yourBucket>/kafka-lib/kafka-clients-2.8.1.jar,oss://<yourBucket>/kafka-lib/spark-sql-kafka-0-10_2.12-3.3.1.jar,oss://<yourBucket>/kafka-lib/spark-token-provider-kafka-0-10_2.12-3.3.1.jar
spark.emr.serverless.network.service.name connection_to_emr_kafka

说明

spark.jars用于指定Spark任务运行时需要加载的外部JAR包路径。本文示例为您步骤四中上传至OSS的路径,请您根据实际情况替换。


  1. 单击发布
  2. 发布任务对话框中,单击确定
  3. 启动流任务。
  1. 单击前往运维
  2. 单击启动

步骤七:查看日志

  1. 单击日志探查页签。
  2. Driver日志列表中,单击stdOut.log
    在打开的日志文件中,您可以看到应用程序执行的相关信息以及返回的结果。

结论:

EMR Serverless Spark对于追求敏捷开发、快速迭代、降低成本以及希望避免复杂运维的大数据项目来说是一个很有吸引力的选择。它特别适合那些希望快速搭建数据处理应用、有弹性资源需求的企业和开发者。然而,对于特定的Hive使用场景和高度定制化的集群管理需求,用户在采用前应详细评估其功能和成本效益。

优点:

  1. 零运维:作为Serverless服务,EMR Serverless Spark免去了集群管理和运维的复杂性,用户无需担心资源预估、扩缩容等问题,降低了运维成本。
  2. 按需付费:采用按实际使用量计费的模式,用户只需为实际消耗的计算和存储资源付费,有助于成本控制和优化预算。
  3. 兼容性:100%兼容Spark,意味着现有的Spark应用可以无缝迁移至EMR Serverless Spark,减少迁移成本和学习曲线。
  4. 集成性:与阿里云的其他服务如OSS(对象存储服务)紧密集成,便于数据的存储与分析,同时也支持与实时计算Flink等组件的集成,实现流批一体的处理能力。
  5. 易用性:提供工作空间的概念,作为业务开发的基本单元,集成了任务、资源和权限管理,便于团队协作和权限控制。
  6. 性能优化:尽管具体性能指标需根据实际使用情况评估,但阿里云在Spark SQL性能优化方面有深厚积累,EMR Serverless Spark可能继承了这些优化特性,有助于提升数据分析的效率和效果。

缺点或注意事项:

  1. Hive支持限制:EMR Serverless Spark当前使用的Hive作业引擎是Tez,不支持Hive on Spark,对于依赖特定Hive特性的用户可能需要评估影响。
  2. 学习曲线:尽管Spark兼容性高,但初次接触Serverless概念和阿里云平台的用户仍需时间学习相关服务的使用和最佳实践。
  3. 网络依赖:由于服务完全基于云环境,对外网访问的稳定性依赖于云服务商的网络质量及用户的网络环境,可能需要关注网络延迟和带宽问题。
  4. 成本考量:虽然按需付费模式灵活,但在高并发或大规模数据处理场景下,成本可能会迅速上升,需要精细的成本监控和管理。
相关实践学习
【AI破次元壁合照】少年白马醉春风,函数计算一键部署AI绘画平台
本次实验基于阿里云函数计算产品能力开发AI绘画平台,可让您实现“破次元壁”与角色合照,为角色换背景效果,用AI绘图技术绘出属于自己的少年江湖。
从 0 入门函数计算
在函数计算的架构中,开发者只需要编写业务代码,并监控业务运行情况就可以了。这将开发者从繁重的运维工作中解放出来,将精力投入到更有意义的开发任务上。
目录
相关文章
|
3月前
|
运维 监控 Cloud Native
【云故事探索】NO.17:国诚投顾的云原生 Serverless 实践
国诚投顾携手阿里云,依托Serverless架构实现技术全面升级,构建高弹性、智能化技术底座,提升业务稳定性与运行效率。通过云原生API网关、微服务治理与智能监控,实现流量精细化管理与系统可观测性增强,打造安全、敏捷的智能投顾平台,助力行业数字化变革。
【云故事探索】NO.17:国诚投顾的云原生 Serverless 实践
|
3月前
|
运维 监控 Cloud Native
【云故事探索】NO.17:国诚投顾的云原生 Serverless 实践
通过与阿里云深度合作,国诚投顾完成了从传统 ECS 架构向云原生 Serverless 架构的全面转型。新的技术架构不仅解决了原有系统在稳定性、弹性、运维效率等方面的痛点,还在成本控制、API 治理、可观测性、DevOps 自动化等方面实现了全方位升级。
|
7月前
|
分布式计算 运维 搜索推荐
立马耀:通过阿里云 Serverless Spark 和 Milvus 构建高效向量检索系统,驱动个性化推荐业务
蝉妈妈旗下蝉选通过迁移到阿里云 Serverless Spark 及 Milvus,解决传统架构性能瓶颈与运维复杂性问题。新方案实现离线任务耗时减少40%、失败率降80%,Milvus 向量检索成本降低75%,支持更大规模数据处理,查询响应提速。
399 57
|
5月前
|
人工智能 分布式计算 DataWorks
一体系数据平台的进化:基于阿里云 EMR Serverless Spark 的持续演进
本文介绍了一体系汽配供应链平台如何借助阿里云EMR Serverless Spark实现从传统Hadoop平台向云原生架构的迁移。通过融合高质量零部件供应与创新互联网科技,一体系利用EMR Serverless Spark和DataWorks构建高效数据分析体系,解决大规模数据处理瓶颈。方案涵盖实时数据集成、Lakehouse搭建、数仓分层设计及BI/ML应用支持,显著提升数据处理性能与业务响应速度,降低运维成本,为数字化转型奠定基础。最终实现研发效率提升、运维压力减轻,并推动AI技术深度整合,迈向智能化云原生数据平台。
222 4
|
5月前
|
分布式计算 运维 监控
Fusion 引擎赋能:流利说如何用阿里云 Serverless Spark 实现数仓计算加速
本文介绍了流利说与阿里云合作,利用EMR Serverless Spark优化数据处理的全过程。流利说是科技驱动的教育公司,通过AI技术提升用户英语水平。原有架构存在资源管理、成本和性能等痛点,采用EMR Serverless Spark后,实现弹性资源管理、按需计费及性能优化。方案涵盖数据采集、存储、计算到查询的完整能力,支持多种接入方式与高效调度。迁移后任务耗时减少40%,失败率降低80%,成本下降30%。未来将深化合作,探索更多行业解决方案。
316 1
|
1月前
|
人工智能 运维 Kubernetes
Serverless 应用引擎 SAE:为传统应用托底,为 AI 创新加速
在容器技术持续演进与 AI 全面爆发的当下,企业既要稳健托管传统业务,又要高效落地 AI 创新,如何在复杂的基础设施与频繁的版本变化中保持敏捷、稳定与低成本,成了所有技术团队的共同挑战。阿里云 Serverless 应用引擎(SAE)正是为应对这一时代挑战而生的破局者,SAE 以“免运维、强稳定、极致降本”为核心,通过一站式的应用级托管能力,同时支撑传统应用与 AI 应用,让企业把更多精力投入到业务创新。
400 29
|
2月前
|
存储 人工智能 Serverless
函数计算进化之路:AI 应用运行时的状态剖析
AI应用正从“请求-响应”迈向“对话式智能体”,推动Serverless架构向“会话原生”演进。阿里云函数计算引领云上 AI 应用 Serverless 运行时技术创新,实现性能、隔离与成本平衡,开启Serverless AI新范式。
410 12