基于YOLOv8深度学习的120种犬类检测与识别系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战、狗类检测、犬种识别

简介: 基于YOLOv8深度学习的120种犬类检测与识别系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战、狗类检测、犬种识别

前言

狗的检测与种类识别技术对于多个领域具有重要意义。

首先,此技术可以用于公共安全和执法。例如,警方和安保人员可以利用它快速识别搜救犬、警犬以及潜在的威胁性狗类,提高工作效率和响应速度。其次,宠物行业也可受益匪浅,此技术有助于宠物店、兽医诊所和动物收容所更准确地记录和管理犬只信息,提供更个性化的服务。

城市管理方面,犬类检测与识别技术能够辅助城市管理者监控流浪狗的数量和分布,及时处理可能的公共卫生问题和安全风险。同样地,野生动物保护项目可以使用这一技术来研究和监控野狗对生态系统的影响。

除此之外,这一技术还可应用在机场或边境检查站,协助有关部门在物流运输中防止违禁品的走私,例如借助识别药物探测犬等专业犬种的能力。牧场和农场领域中,犬类检测与识别有助于牧羊人更精准地管理牧羊犬,以保护牲畜。

消费领域,通过犬的识别技术,可以为狗主人提供一个趣味性的交互平台,例如通过宠物APP来分享自己宠物的特征,参与社区内的互动和活动。同时,犬类识别系统也能成为教育工具,帮助人们了解不同的犬种及其特性,提高公众对动物多样性的认识和尊重。

总而言之,犬类检测与种类识别技术的发展将带来社会治理效率的提升,宠物产业的增长,公众安全与健康水平的改进,同时还能促进人们对动物福利的关注。随着技术的不断进步,这一领域的应用场景有望进一步拓宽。

博主通过搜集不同犬类的相关数据图片,根据YOLOv8的目标检测技术,基于python与Pyqt5开发了一款界面简洁的犬类检测与识别系统,可支持图片、视频以及摄像头检测,同时可以将图片或者视频检测结果进行保存

软件初始界面如下图所示:

检测结果界面如下:

一、软件核心功能介绍及效果演示

软件主要功能

1. 可进行120种犬类的目标检测与识别,详细类别见下文数据集说明;
2. 支持图片、视频及摄像头进行检测,同时支持图片的批量检测
3. 界面可实时显示目标位置目标总数置信度用时等信息;
4. 支持图片或者视频检测结果保存

(1)图片检测演示

点击图片图标,选择需要检测的图片,或者点击文件夹图标,选择需要批量检测图片所在的文件夹,操作演示如下:

点击目标下拉框后,可以选定指定目标的结果信息进行显示。 点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。

注:1.右侧目标位置默认显示置信度最大一个目标位置。所有检测结果均在左下方表格中显示。

单个图片检测操作如下:

批量图片检测操作如下:

(2)视频检测演示

点击视频图标,打开选择需要检测的视频,就会自动显示检测结果。点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。

(3)摄像头检测演示

点击摄像头图标,可以打开摄像头,可以实时进行检测,再次点击摄像头图标,可关闭摄像头。

(4)保存图片与视频检测结果

点击保存按钮后,会将当前选择的图片【含批量图片】或者视频的检测结果进行保存。检测的图片与视频结果会存储在save_data目录下。

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行

其主要网络结构如下:

2. 数据集准备与训练

通过网络上搜集关于不同种类的犬类图片,并使用LabelMe标注工具对每张图片中的目标边框(Bounding Box)及类别进行标注。一共包含20630张图片,其中训练集包含16464张图片验证集包含4166张图片,部分图像及标注如下图所示。

类别中文名称:

[‘吉娃娃’, ‘日本宫廷犬’, ‘马耳他犬’, ‘北京犬’, ‘西施犬’, ‘查理王小猎犬’, ‘蝴蝶犬’, ‘玩具梗’, ‘罗得西亚背脊犬’, ‘阿富汗猎犬’, ‘巴吉度猎犬’, ‘比格犬’, ‘血猎犬’, ‘布鲁提克犬’, ‘黑棕猎浣熊犬’, ‘树猎犬’, ‘英国猎狐犬’, ‘红骨猎犬’, ‘俄罗斯猎狼犬’, ‘爱尔兰狼犬’, ‘意大利灰狗’, ‘小猎犬’, ‘伊比赞猎犬’, ‘挪威猎麋犬’, ‘水獭猎犬’, ‘萨路基犬’, ‘苏格兰猎鹿犬’, ‘威玛猎犬’, ‘斯塔福郡斗牛梗’, ‘美国斯塔福郡梗’, ‘贝灵顿梗’, ‘边境梗’, ‘凯利蓝梗’, ‘爱尔兰梗’, ‘诺福克梗’, ‘诺里奇梗’, ‘约克夏梗’, ‘刚毛狐梗’, ‘湖畔梗’, ‘锡利哈姆梗’, ‘艾尔代尔梗’, ‘凯恩梗’, ‘澳洲梗’, ‘丹迪丁蒙梗’, ‘波士顿梗’, ‘迷你雪纳瑞’, ‘巨型雪纳瑞’, ‘标准雪纳瑞’, ‘苏格兰梗’, ‘西藏梗’, ‘丝毛梗’, ‘软毛麦色梗’, ‘西高地白梗’, ‘拉萨犬’, ‘平毛寻回犬’, ‘卷毛寻回犬’, ‘金毛寻回犬’, ‘拉布拉多寻回犬’, ‘切萨皮克湾寻回犬’, ‘德国短毛指示犬’, ‘匈牙利维兹拉犬’, ‘英国塞特犬’, ‘爱尔兰塞特犬’, ‘戈登塞特犬’, ‘布列塔尼犬’, ‘克伦伯犬’, ‘英国史宾格犬’, ‘威尔士史宾格犬’, ‘可卡犬’, ‘萨塞克斯犬’, ‘爱尔兰水猎犬’, ‘匈牙利古瓦斯犬’, ‘梗犬’, ‘比利时格罗宁达尔犬’, ‘比利时马里努犬’, ‘布里亚德犬’, ‘澳洲牧羊犬’, ‘匈牙利柯蒙犬’, ‘古代英国牧羊犬’, ‘喜乐蒂牧羊犬’, ‘边境牧羊犬’, ‘边境牧羊犬’, ‘佛兰德牧羊犬’, ‘罗得维尔犬’, ‘德国牧羊犬’, ‘杜宾犬’, ‘迷你杜宾’, ‘大瑞士山地犬’, ‘伯恩山犬’, ‘阿彭策尔山地犬’, ‘恩特尔布赫山犬’, ‘拳师犬’, ‘英国斗牛犬’, ‘藏獒’, ‘法国斗牛犬’, ‘大丹犬’, ‘圣伯纳犬’, ‘美洲爱斯基摩犬’, ‘阿拉斯加雪橇犬’, ‘西伯利亚雪橇犬’, ‘猴脸梗’, ‘巴辛吉犬’, ‘巴哥犬’, ‘莱昂贝格犬’, ‘纽芬兰犬’, ‘大白熊犬’, ‘萨摩耶犬’, ‘博美犬’, ‘松狮犬’, ‘荷兰毛狮犬’, ‘布鲁塞尔格力芬犬’, ‘彭布罗克威尔士柯基犬’, ‘卡迪根威尔士柯基犬’, ‘玩具贵宾’, ‘迷你贵宾’, ‘标准贵宾’, ‘墨西哥无毛犬’, ‘澳洲野狗’, ‘亚洲野狗’, ‘非洲狩猎犬’]

图片数据的存放格式如下,在项目目录中新建datasets目录,同时将跌倒检测的图片分为训练集与验证集放入DogData目录下。

同时我们需要新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml的具体内容如下:

train: E:\MyCVProgram\DogDetection\datasets\DogData\train  # train images (relative to 'path') 128 images
val: E:\MyCVProgram\DogDetection\datasets\DogData\val  # val images (relative to 'path') 128 images
test:  # val images (optional)
# number of classes
nc: 120
# Classes
names: ['Chihuahua', 'Japanese_spaniel', 'Maltese_dog', 'Pekinese', 'Shih-Tzu', 'Blenheim_spaniel', 'papillon', 'toy_terrier', 'Rhodesian_ridgeback', 'Afghan_hound', 'basset', 'beagle', 'bloodhound', 'bluetick', 'black-and-tan_coonhound', 'Walker_hound', 'English_foxhound', 'redbone', 'borzoi', 'Irish_wolfhound', 'Italian_greyhound', 'whippet', 'Ibizan_hound', 'Norwegian_elkhound', 'otterhound', 'Saluki', 'Scottish_deerhound', 'Weimaraner', 'Staffordshire_bullterrier', 'American_Staffordshire_terrier', 'Bedlington_terrier', 'Border_terrier', 'Kerry_blue_terrier', 'Irish_terrier', 'Norfolk_terrier', 'Norwich_terrier', 'Yorkshire_terrier', 'wire-haired_fox_terrier', 'Lakeland_terrier', 'Sealyham_terrier', 'Airedale', 'cairn', 'Australian_terrier', 'Dandie_Dinmont', 'Boston_bull', 'miniature_schnauzer', 'giant_schnauzer', 'standard_schnauzer', 'Scotch_terrier', 'Tibetan_terrier', 'silky_terrier', 'soft-coated_wheaten_terrier', 'West_Highland_white_terrier', 'Lhasa', 'flat-coated_retriever', 'curly-coated_retriever', 'golden_retriever', 'Labrador_retriever', 'Chesapeake_Bay_retriever', 'German_short-haired_pointer', 'vizsla', 'English_setter', 'Irish_setter', 'Gordon_setter', 'Brittany_spaniel', 'clumber', 'English_springer', 'Welsh_springer_spaniel', 'cocker_spaniel', 'Sussex_spaniel', 'Irish_water_spaniel', 'kuvasz', 'schipperke', 'groenendael', 'malinois', 'briard', 'kelpie', 'komondor', 'Old_English_sheepdog', 'Shetland_sheepdog', 'collie', 'Border_collie', 'Bouvier_des_Flandres', 'Rottweiler', 'German_shepherd', 'Doberman', 'miniature_pinscher', 'Greater_Swiss_Mountain_dog', 'Bernese_mountain_dog', 'Appenzeller', 'EntleBucher', 'boxer', 'bull_mastiff', 'Tibetan_mastiff', 'French_bulldog', 'Great_Dane', 'Saint_Bernard', 'Eskimo_dog', 'malamute', 'Siberian_husky', 'affenpinscher', 'basenji', 'pug', 'Leonberg', 'Newfoundland', 'Great_Pyrenees', 'Samoyed', 'Pomeranian', 'chow', 'keeshond', 'Brabancon_griffon', 'Pembroke', 'Cardigan', 'toy_poodle', 'miniature_poodle', 'standard_poodle', 'Mexican_hairless', 'dingo', 'dhole', 'African_hunting_dog']

注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。

数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

# 加载模型
model = YOLO("yolov8n.pt")  # 加载预训练模型
# Use the model
if __name__ == '__main__':
    # Use the model
    results = model.train(data='datasets/DogData/data.yaml', epochs=250, batch=4)  # 训练模型
    # 将模型转为onnx格式
    # success = model.export(format='onnx')

3. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:

各损失函数作用说明:

定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;

分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;

动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLOv8训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。

本文训练结果如下:

我们通常用PR曲线来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP,可以看到本文模型各类目标检测的mAP@0.5平均值为0.826,结果还是很不错的。

4. 检测结果识别

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。

图片检测代码如下:

# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/n02085620_3838.jpg"
# 加载预训练模型
# conf  0.25  object confidence threshold for detection
# iou 0.7 intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')
# model = YOLO(path, task='detect',conf=0.5)
# 检测图片
results = model(img_path)
res = results[0].plot()
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:

以上便是关于此款犬类检测与识别系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存

相关文章
|
12天前
|
缓存 监控 测试技术
Python中的装饰器:功能扩展与代码复用的利器###
本文深入探讨了Python中装饰器的概念、实现机制及其在实际开发中的应用价值。通过生动的实例和详尽的解释,文章展示了装饰器如何增强函数功能、提升代码可读性和维护性,并鼓励读者在项目中灵活运用这一强大的语言特性。 ###
|
11天前
|
Python
探索Python中的装饰器:简化代码,提升效率
【10月更文挑战第39天】在编程的世界中,我们总是在寻找使代码更简洁、更高效的方法。Python的装饰器提供了一种强大的工具,能够让我们做到这一点。本文将深入探讨装饰器的基本概念,展示如何通过它们来增强函数的功能,同时保持代码的整洁性。我们将从基础开始,逐步深入到装饰器的高级用法,让你了解如何利用这一特性来优化你的Python代码。准备好让你的代码变得更加优雅和强大了吗?让我们开始吧!
19 1
|
12天前
|
存储 缓存 监控
掌握Python装饰器:提升代码复用性与可读性的利器
在本文中,我们将深入探讨Python装饰器的概念、工作原理以及如何有效地应用它们来增强代码的可读性和复用性。不同于传统的函数调用,装饰器提供了一种优雅的方式来修改或扩展函数的行为,而无需直接修改原始函数代码。通过实际示例和应用场景分析,本文旨在帮助读者理解装饰器的实用性,并鼓励在日常编程实践中灵活运用这一强大特性。
|
14天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
31 2
|
10天前
|
机器学习/深度学习 人工智能 算法
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术在图像识别领域的应用,重点分析了卷积神经网络(CNN)的工作原理及其在处理图像数据方面的优势。通过案例研究,展示了深度学习如何提高图像识别的准确性和效率。同时,文章也讨论了当前面临的主要挑战,包括数据不足、过拟合问题以及计算资源的需求,并提出了相应的解决策略。
|
2天前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
14 8
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
本文旨在通过深入浅出的方式,为读者揭示卷积神经网络(CNN)的神秘面纱,并展示其在图像识别领域的实际应用。我们将从CNN的基本概念出发,逐步深入到网络结构、工作原理以及训练过程,最后通过一个实际的代码示例,带领读者体验CNN的强大功能。无论你是深度学习的初学者,还是希望进一步了解CNN的专业人士,这篇文章都将为你提供有价值的信息和启发。
|
6天前
|
机器学习/深度学习 数据采集 测试技术
深度学习在图像识别中的应用
本篇文章将探讨深度学习在图像识别中的应用。我们将介绍深度学习的基本原理,以及如何使用深度学习进行图像识别。我们将通过一个简单的代码示例来演示如何使用深度学习进行图像识别。这篇文章的目的是帮助读者理解深度学习在图像识别中的作用,并学习如何使用深度学习进行图像识别。
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
|
6天前
|
机器学习/深度学习 算法框架/工具 Python
深度学习在图像识别中的应用
本文将探讨深度学习技术在图像识别领域的应用。我们将介绍深度学习的基本原理,以及如何使用深度学习进行图像识别。我们还将通过一个简单的代码示例来演示如何使用深度学习进行图像识别。
下一篇
无影云桌面