【决策树】一文看懂图解决策树原理:信息熵、条件熵与信息增益

简介: 【决策树】一文看懂图解决策树原理:信息熵、条件熵与信息增益


本文用过图解的方式并结合实际案例的方式讲述了决策树的基本原理,主要包含信息熵、条件熵与信息增益的概念与计算方式,以及如何选择各个决策节点即:选择信息增益最大的特征)

想要PDF文档的小伙伴,通过关注GZH:阿旭算法与机器学习,回复:“决策树”即可获取。

重要结论

1.信息熵用来衡量信息的不确定性或者混乱程度的;

2.信息的不确定性越大熵越大;

3.决策树每个节点的选择,选择信息增益最大的特征;

目录
打赏
0
0
0
0
127
分享
相关文章
R语言多项式回归拟合非线性关系
R语言多项式回归拟合非线性关系
R语言多项式回归拟合非线性关系
|
10月前
特征选择方法——最佳子集回归、逐步回归
特征选择方法——最佳子集回归、逐步回归
|
10月前
R语言异方差回归模型建模:用误差方差解释异方差
R语言异方差回归模型建模:用误差方差解释异方差
机器学习 - [源码实现决策树小专题]决策树中,信息增益、信息增益率计算以及最佳特征挑选的Python实现
机器学习 - [源码实现决策树小专题]决策树中,信息增益、信息增益率计算以及最佳特征挑选的Python实现
125 0
【阿旭机器学习实战】【10】朴素贝叶斯模型原理及3种贝叶斯模型对比:高斯分布朴素贝叶斯、多项式分布朴素贝叶斯、伯努利分布朴素贝叶斯
【阿旭机器学习实战】【10】朴素贝叶斯模型原理及3种贝叶斯模型对比:高斯分布朴素贝叶斯、多项式分布朴素贝叶斯、伯努利分布朴素贝叶斯
【阿旭机器学习实战】【10】朴素贝叶斯模型原理及3种贝叶斯模型对比:高斯分布朴素贝叶斯、多项式分布朴素贝叶斯、伯努利分布朴素贝叶斯
【Pytorch神经网络理论篇】 21 信息熵与互信息:联合熵+条件熵+交叉熵+相对熵/KL散度/信息散度+JS散度
对抗神经网络(如DIM模型)及图神经网络(如DGI模型)中,使用互信息来作为无监督方式提取特征的方法。
1074 0
【机器学习】线性回归——最小二乘法的概率解释高斯噪声(理论+图解+公式推导)
【机器学习】线性回归——最小二乘法的概率解释高斯噪声(理论+图解+公式推导)
368 0
【机器学习】线性回归——最小二乘法的概率解释高斯噪声(理论+图解+公式推导)
决策树中熵、条件熵、信息增益及信息增益比的python实现
决策树中熵、条件熵、信息增益及信息增益比的python实现
决策树中熵、条件熵、信息增益及信息增益比的python实现
多元线性回归的模型解释、假设检验、特征选择(二)
多元线性回归的模型解释、假设检验、特征选择(二)
377 0
多元线性回归的模型解释、假设检验、特征选择(二)
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等