算法系列--递归,回溯,剪枝的综合应用(3)(下)

简介: 算法系列--递归,回溯,剪枝的综合应用(3)(下)

算法系列--递归,回溯,剪枝的综合应用(3)(上)

https://developer.aliyun.com/article/1480885?spm=a2c6h.13148508.setting.14.5f4e4f0euaAisj

💕"对相爱的人来说,对方的心意,才是最好的房子。"💕

作者:Lvzi

文章主要内容:算法系列–递归,回溯,剪枝的综合应用(3)

大家好,今天为大家带来的是算法系列--递归,回溯,剪枝的综合应用(3),带来几个比较经典的问题N皇后解数独,这两道都是hard级别的题目,但是不要被吓到!请看我的分析

2.有效的数独

:本题只是一个引子,是为了给解数独这道题目做引入

链接:

https://leetcode.cn/problems/valid-sudoku/description/

分析:

本题需要判断已经填入数字的数独是否有效,判断条件和N皇后那道题目的剪枝策略很像,具体的判断条件如下:

  1. 当前数字所在位置的相同不能有相同的数字
  2. 当前数字所在位置的相同不能有相同的数字
  3. 当前数字所在位置所处的九宫格不能有相同的数字

行和列只需要使用两个二维的布尔类型的数组进行标记即可,但是九宫格这个判断条件如何标记呢?这里用到了一个比较巧妙的策略,将连续的三个位置看成一个数字,

代码:

class Solution {
    boolean[][] row, col;
    boolean[][][] grid;
    public boolean isValidSudoku(char[][] board) {
        row = new boolean[9][10];
        col = new boolean[9][10];
        grid = new boolean[3][3][10];
        for(int i = 0; i < 9; i++) {
            for(int j = 0; j < 9; j++) {
                if(board[i][j] != '.') {
                    int num = board[i][j] - '0';
                    if(col[j][num] == true || row[i][num] == true || grid[i / 3][j / 3][num] == true)
                        return false;
                    col[j][num] = row[i][num] = grid[i / 3][j / 3][num] = true;
                }
            }
        }
        return true;
    }
}

3.解数独

链接:

https://leetcode.cn/problems/sudoku-solver/description/

分析:

很容易分析出本题是一个递归问题,因为每一步做的事情都是相同的

  • 存入数字,判断是否符合条件

递归的策略也容易想出–以一个一个的空格进行枚举

1.设计代码

全局变量

  • row[][],col[][]分别用于标记行和列
  • grid[][][]:用于标记九宫格

dfs:

  • 函数头:只需要传递原始的棋盘即可,返回值设置为boolean
  • 函数体:关注每一个子问题具体干的事情,在当前空位置从数字1枚举到数字9,判断是否符合添加的条件,如果可以,就填入,并递归下一个空位置
  • 递归出口:全部填充完毕

2.剪枝

注意有可能上一步的策略会导致当前位置无法填入任何数字,也就是上一步的策略是否有效需要递归到后面的子问题才能知道,一旦某个子问题中发现无法填入任何数字,证明上一步的策略是失败的,没有必要继续递归下去,此时就发生了剪枝,对于每一次递归来说,都需要返回一个布尔类型的数据,用于记录策略成功与否

3.回溯

回溯的策略和N皇后很像,恢复原状即可

代码:

class Solution {
    boolean[][] row, col;
    boolean[][][] grid;
    public void solveSudoku(char[][] board) {
        row = new boolean[9][10];
        col = new boolean[9][10];
        grid = new boolean[3][3][10];
        // 初始化
        for(int i = 0; i < 9; i++) {
            for(int j = 0; j < 9; j++) {
                if(board[i][j] != '.') {
                    int num = board[i][j] - '0';
                    row[i][num] = col[j][num] = grid[i / 3][j / 3][num] = true;
                }
            }
        }
        // 递归
        dfs(board);
    }
    private boolean dfs(char[][] board) {
        // 这里采用的递归的策略是一个一个空位置进行递归的
        for(int i = 0; i < 9; i++) {
            for(int j = 0; j < 9; j++) {
                if(board[i][j] == '.') {
                    for(int num = 1; num <= 9; num++) {
                        if(!row[i][num] && !col[j][num] && !grid[i / 3][j / 3][num]) {// 剪枝
                            board[i][j] = (char)('0' + num);
                            row[i][num] = col[j][num] = grid[i / 3][j / 3][num] = true;
                            // 递归下一个位置
                            if(dfs(board) == true) return true;// 当前位置的策略是成功的
                            board[i][j] = '.';// 回溯
                            row[i][num] = col[j][num] = grid[i / 3][j / 3][num] = false;
                        }
                    }
                    return false;// 走到这里证明当前位置一个数字也填不了,需要更换上一步的策略
                }
            }
        }
        return true;// 所有的空位都被填充
    }
}

一定要重点理解代码中三个return的实际含义

(本题真的很有意思,你可以利用上述代码快速的完成一道大师级的数独题目哦~笔者已经试过一次,真的很爽!!!)


目录
相关文章
|
2月前
|
存储 监控 JavaScript
基于布隆过滤器的 Node.js 算法在局域网电脑桌面监控设备快速校验中的应用研究
本文探讨了布隆过滤器在局域网电脑桌面监控中的应用,分析其高效空间利用率、快速查询性能及动态扩容优势,并设计了基于MAC地址的校验模型,提供Node.js实现代码,适用于设备准入控制与重复数据过滤场景。
78 0
|
11天前
|
运维 监控 JavaScript
基于 Node.js 图结构的局域网设备拓扑分析算法在局域网内监控软件中的应用研究
本文探讨图结构在局域网监控系统中的应用,通过Node.js实现设备拓扑建模、路径分析与故障定位,提升网络可视化、可追溯性与运维效率,结合模拟实验验证其高效性与准确性。
82 3
|
21天前
|
机器学习/深度学习 资源调度 算法
遗传算法模型深度解析与实战应用
摘要 遗传算法(GA)作为一种受生物进化启发的优化算法,在复杂问题求解中展现出独特优势。本文系统介绍了GA的核心理论、实现细节和应用经验。算法通过模拟自然选择机制,利用选择、交叉、变异三大操作在解空间中进行全局搜索。与梯度下降等传统方法相比,GA不依赖目标函数的连续性或可微性,特别适合处理离散优化、多目标优化等复杂问题。文中详细阐述了染色体编码、适应度函数设计、遗传操作实现等关键技术,并提供了Python代码实现示例。实践表明,GA的成功应用关键在于平衡探索与开发,通过精心调参维持种群多样性同时确保收敛效率
|
21天前
|
机器学习/深度学习 边缘计算 人工智能
粒子群算法模型深度解析与实战应用
蒋星熠Jaxonic是一位深耕智能优化算法领域多年的技术探索者,专注于粒子群优化(PSO)算法的研究与应用。他深入剖析了PSO的数学模型、核心公式及实现方法,并通过大量实践验证了其在神经网络优化、工程设计等复杂问题上的卓越性能。本文全面展示了PSO的理论基础、改进策略与前沿发展方向,为读者提供了一份详尽的技术指南。
粒子群算法模型深度解析与实战应用
|
21天前
|
机器学习/深度学习 算法 安全
小场景大市场:猫狗识别算法在宠物智能设备中的应用
将猫狗识别算法应用于宠物智能设备,是AIoT领域的重要垂直场景。本文从核心技术、应用场景、挑战与趋势四个方面,全面解析这一融合算法、硬件与用户体验的系统工程。
|
2月前
|
算法 数据可视化
matlab版本粒子群算法(PSO)在路径规划中的应用
matlab版本粒子群算法(PSO)在路径规划中的应用
|
3月前
|
存储 监控 算法
公司员工泄密防护体系中跳表数据结构及其 Go 语言算法的应用研究
在数字化办公中,企业面临员工泄密风险。本文探讨使用跳表(Skip List)数据结构优化泄密防护系统,提升敏感数据监测效率。跳表以其高效的动态数据处理能力,为企业信息安全管理提供了可靠技术支持。
61 0
|
13天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
15天前
|
传感器 机器学习/深度学习 算法
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
103 1
|
14天前
|
传感器 机器学习/深度学习 算法
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)

热门文章

最新文章