Transformer模型中前置Norm与后置Norm的区别

简介: Transformer模型中前置Norm与后置Norm的区别

前言

在讨论Transformer模型和Vision Transformer (ViT)模型中归一化层位置的不同,我们首先需要理解归一化层(Normalization)在这些模型中的作用。归一化层主要用于调整输入数据的尺度,以减少梯度消失或梯度爆炸的问题,从而提高模型的稳定性和训练效率。

原始的transformer模型把norm归一化层放在了注意力机制的后面,但是vision transformer模型把norm归一化层放到了注意力机制的前面。

在Transformer模型中,归一化(Normalization)层的位置在注意力前后有所不同。这种差异主要源于对模型训练和稳定性的考虑。

             

不同位置的作用

在原始的transformer模型中,归一化层被放置在注意力机制之后。这种设计有助于提高模型的训练效率和稳定性。在自注意力机制中,输入序列通过与权重矩阵相乘来计算注意力分数,这可能导致梯度消失或梯度爆炸的问题。将归一化层放在注意力机制之后,可以有效缓解这些问题,因为归一化层可以调整输入的尺度。使得梯度更加稳定。此外,由于注意力机制本身是一种非线性的处理方式,把归一化层放在它之后,可以帮助保持输入数据分布的稳定性,这对于模型收敛和有效训练来说是至关重要的。

在Vision transformer(ViT)模型中,归一化层被放置在注意力机制之前。这种设计选择是为了更好地适应图像数据的特性。在ViT模型中,输入的图像数据首先经过卷积层进行初步的特征提取,然后这些特征通过归一化层和线性层进行进一步处理,以便于计算注意力分数。鉴于图像数据通常具有较大的尺度变化,将归一化层置于注意力机制之前可以更有效地调整输入特征的尺度。这样的设计使得模型能够更好地适应和处理图像数据,从而在视觉任务中表现出更优异的性能。


总结

  1. 在原始的Transformer模型中,归一化层放在注意力机制之后:这样的安排有助于模型更好地保留和学习输入数据之间的关系,同时也有利于保持模型训练的稳定性和高效性。
  2. 在Vision Transformer模型中,归一化层放在注意力机制之前:这种设计有助于针对图像数据调整输入特征的尺度,使模型在处理图像数据时更加高效和精确。
目录
相关文章
|
5月前
|
机器学习/深度学习 并行计算 算法
YOLOv8改进 | 卷积篇 |手把手教你添加动态蛇形卷积(Dynamic Snake Convolution)
YOLOv8改进 | 卷积篇 |手把手教你添加动态蛇形卷积(Dynamic Snake Convolution)
606 0
|
3月前
|
机器学习/深度学习 Serverless 计算机视觉
【YOLOv8改进 - 注意力机制】Sea_Attention: Squeeze-enhanced Axial Attention,结合全局语义提取和局部细节增强
【YOLOv8改进 - 注意力机制】Sea_Attention: Squeeze-enhanced Axial Attention,结合全局语义提取和局部细节增强
|
3月前
|
计算机视觉
【YOLOv10改进-卷积Conv】动态蛇形卷积(Dynamic Snake Convolution)用于管状结构分割任务
YOLOv10专栏介绍了一种用于精确分割管状结构的新方法DSCNet,它结合了动态蛇形卷积、多视角融合和拓扑连续性约束损失。DSConv创新地聚焦细长局部结构,增强管状特征感知,而多视角融合和TCLoss则改善了全局形态理解和分割连续性。在2D和3D数据集上的实验显示,DSCNet在血管和道路等分割任务上超越了传统方法。DySnakeConv模块整合到YOLOv10中,提升了目标检测的准确性。[链接指向详细文章](https://blog.csdn.net/shangyanaf/article/details/140007047)
|
4月前
|
机器学习/深度学习 计算机视觉
YOLOv8改进 | 卷积模块 | 用坐标卷积CoordConv替换Conv
💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡
|
4月前
|
机器学习/深度学习 计算机视觉
YOLOv8改进 | 卷积模块 | 在主干网络中添加/替换蛇形卷积Dynamic Snake Convolution
本专栏介绍的DSCNet采用蛇形动态卷积,增强对管状结构特征提取,尤其适合血管等弯曲目标。动态卷积核自适应调整,灵感来自蛇形曲线,能灵活捕捉不同尺度细节。论文及官方代码链接已提供,适用于提升目标检测的准确性和鲁棒性。
|
4月前
|
机器学习/深度学习 计算机视觉
YOLOv5改进 | 卷积模块 | 将Conv替换为轻量化的GSConv【原理 + 完整代码】
在这个教程中,作者介绍了如何将YOLOv5中的Conv模块替换为新型轻量级卷积GSConv,以实现模型瘦身并保持准确性。GSConv结合了分组卷积和空间卷积,减少了计算量。文章详细阐述了GSConv的原理,并提供了添加GSConv到YOLOv5的代码实现步骤。此外,还提到了Slim-neck by GSConv技术,它通过通道压缩和高效连接优化网络结构。读者可以获取完整代码进行实践,适用于资源受限的环境,如移动设备和实时应用。
|
4月前
|
机器学习/深度学习 数据可视化 计算机视觉
【YOLOv8改进 - 注意力机制】Triplet Attention:轻量有效的三元注意力
**摘要:** 本文提出TripletAttention,一种轻量级的计算机视觉注意力机制,通过三分支结构增强跨维度交互。该方法利用旋转操作和残差变换在通道和空间维度上建立依赖,提升模型性能,同时保持低计算成本。作为附加模块,它能集成到现有骨干网络中,适用于图像分类及目标检测等任务。实验证实在ImageNet-1k、MSCOCO和PASCAL VOC上取得良好效果,并提供GradCAM可视化分析。代码已开源:[GitHub](https://github.com/LandskapeAI/triplet-attention)。
|
5月前
|
计算机视觉
【YOLOv8改进】动态蛇形卷积(Dynamic Snake Convolution)用于管状结构分割任务
YOLO目标检测专栏介绍了DSCNet,它针对血管和道路等管状结构的分割任务进行优化。DSCNet采用动态蛇形卷积(DSConv)聚焦细长结构,多视角融合策略增强全局形态理解,且通过持久同调的连续性约束损失改善拓扑连续性。DSConv在2D和3D数据集上表现优于传统方法,实现更高精度和连续性。该技术已应用于yolov8,提升对管状结构的检测效果。
|
5月前
|
机器学习/深度学习 数据处理 计算机视觉
YOLOv8改进 | 2023 | 将RT-DETR模型AIFI模块和Conv模块结合替换SPPF(全网独家改进)
YOLOv8改进 | 2023 | 将RT-DETR模型AIFI模块和Conv模块结合替换SPPF(全网独家改进)
205 0
|
5月前
|
机器学习/深度学习 数据处理 计算机视觉
YOLOv5改进 | 2023 | 将RT-DETR模型AIFI模块和Conv模块结合替换SPPF(全网独家改进)
YOLOv5改进 | 2023 | 将RT-DETR模型AIFI模块和Conv模块结合替换SPPF(全网独家改进)
250 0