【MATLAB 】 辛几何模态分解信号分解+模糊熵(近似熵)算法
微信公众号由于改变了推送规则,为了每次新的推送可以在第一时间出现在您的订阅列表中,记得将本公众号设为星标或置顶哦~
有意向获取代码,请转文末观看代码获取方式~
1 辛几何模态分解算法
辛几何模态分解算法(Singular Geometry Mode Decomposition,SGFD)是一种新的多目标模态分解方法。该方法可以将复杂图形分解为连续的几何模态,并将图形划分成若干个连续的几何模态组合形成的区域。
SGFD的原理是将复杂图形分解为一系列的连续几何模态,这种方法基于信息学中的拉普拉斯法则。通过将图形划分成多个连续的几何模态,SGFD能够充分表达图形的复杂度。
SGFD方法的特点是能够有效地提取各种细微复杂的几何模态,并且可以更准确地识别几何模态。因此,SGFD方法适用于分析非线性系统,可以保留测量的本质特征,并保持主要时间序列与以前相同。
MATLAB 信号分解第十三期-辛几何模态分解算法:
https://mbd.pub/o/bread/mbd-ZJaYmplu
信号分解全家桶详情请参见:
https://mbd.pub/o/author-aWWWnHBsYw==/work
2 模糊熵算法
模糊熵算法是一种用于衡量序列复杂度的方法。它基于模糊数学理论,计算一个随机变量的模糊熵。模糊熵的定义是:设X为一个取值范围为[0,1]的随机变量,它的概率密度函数为f(x),则模糊熵H(X)定义为:H(X) = -∫_0^1〖f(x)lnf(x)dx 〗 其中ln为自然对数。
模糊熵算法与近似熵和样本熵类似,模糊熵也用于衡量新模式产生的概率大小。较大的模糊熵表示新模式产生的概率越大,即序列复杂度越大。
在实际应用中,为了计算一个随机变量的模糊熵,需要先确定它的概率密度函数f(x)。当变量的概率密度函数已知时,可以通过上述公式来计算模糊熵。如果一个随机变量只有有限个取值,则可以使用频率分布来估计概率密度函数。
3 近似熵算法
近似熵算法是一种用于衡量序列复杂度的方法。它基于样本数据集中的近似概率分布,计算出近似熵。近似熵的定义是:设X为一个取值范围为[0,1]的随机变量,它的样本集合为{x1,x2,...,xn},则近似熵ApEn(X)定义为:
ApEn(X) = -sum_{i=1}^{m}(p(i|m)log_2 p(i|m))
其中,m是样本集合中的子序列数目,p(i|m)是长度为m的子序列中第i个序列出现的概率。
近似熵算法适用于样本数据集较小的情况,因为它只需要样本集合中的子序列数目和每个子序列的近似概率分布来计算近似熵。在计算过程中,可以根据需要调整子序列的长度m和样本集合的大小n,以获得更准确的结果。
4 代码获取
如下为简短的视频操作教程。
算法代码获取:
https://mbd.pub/o/bread/ZJyTl5Zr
关于代码有任何疑问,可以一起探讨科研,写作,代码等诸多学术问题,我们一起进步~
1、感谢关注 Lwcah 的个人公众号,有关资源获取,请公众号后台发送推文末的关键词,自助获取。
2、若要添加个人微信号,请后台发送关键词:微信号。
3、若要进微信群:Lwcah 科研技巧群 3。请添加个人微信号后进群(大家沉浸式科研,广告勿扰),不定时更新科研技巧类推文。可以一起探讨科研,写作,文献,代码等诸多学术问题,我们一起进步。
记得关注公众号,并设为星标哦~谢谢啦~