SpringBoot2 | @SpringBootApplication注解 自动化配置流程源码分析(三)

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: SpringBoot2 | @SpringBootApplication注解 自动化配置流程源码分析(三)


在上一篇博客中分析了springBoot启动流程,大体的轮廓只是冰山一角。今天就来看一下springBoot的亮点功能:自动化装配功能。

先从@SpringBootApplication开始。

在启动流程章节中,我们讲述了SpringBoot2大致的启动步骤,并进行了源码详解。但是在刷新容器这块并未展开,refreshContext(context);简单的一行代码,背后却做了太多事情。所以为了不喧宾夺主,本篇也尽量选取和注解@SpringBootApplication有关的方法讲解。

1)springBoot启动类加载

首先加载springBoot启动类注入到spring容器中bean map中,看下prepareContext方法中的load方法: load(context, sources.toArray(new Object[0])); 跟进该方法最终会执行BeanDefinitionLoaderload方法:

private int load(Object source) {
    Assert.notNull(source, "Source must not be null");
    //如果是class类型,启用注解类型
    if (source instanceof Class<?>) {
      return load((Class<?>) source);
    }
    //如果是resource类型,启用xml解析
    if (source instanceof Resource) {
      return load((Resource) source);
    }
    //如果是package类型,启用扫描包,例如:@ComponentScan
    if (source instanceof Package) {
      return load((Package) source);
    }
    //如果是字符串类型,直接加载
    if (source instanceof CharSequence) {
      return load((CharSequence) source);
    }
    throw new IllegalArgumentException("Invalid source type " + source.getClass());
  }
复制代码

继续跟进load(Class<?> source)方法:

上述方法判断启动类中是否包含@component注解,可我们的启动类并没有该注解。继续跟进会发现,AnnotationUtils判断是否包含该注解是通过递归实现,注解上的注解若包含指定类型也是可以的。 启动类中包含@SpringBootApplication注解,进一步查找到@SpringBootConfiguration注解,然后查找到@Component注解,最后会查找到@Component注解:

@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Component
public @interface Configuration {
}
复制代码

在查找到@Component注解后,表面该对象为spring bean,然后会将其信息包装成 beanDefinitaion ,添加到容器的 beanDefinitionMap中。如下:

如此一来,我们的启动类就被包装成AnnotatedGenericBeanDefinition了,后续启动类的处理都基于该对象了。

2)自动装配的入口:

从刷新容器开始:
public void refresh() throws BeansException, IllegalStateException {
    //...
    invokeBeanFactoryPostProcessors(beanFactory);
    //...
  }
复制代码

上述省去了不相关的代码,继续跟进invokeBeanFactoryPostProcessors方法:

protected void invokeBeanFactoryPostProcessors(ConfigurableListableBeanFactory beanFactory) {
    //开始执行beanFactoryPostProcessor对应实现类
    PostProcessorRegistrationDelegate.invokeBeanFactoryPostProcessors(beanFactory, getBeanFactoryPostProcessors());
    // Detect a LoadTimeWeaver and prepare for weaving, if found in the meantime
    // (e.g. through an @Bean method registered by ConfigurationClassPostProcessor)
    if (beanFactory.getTempClassLoader() == null && beanFactory.containsBean(LOAD_TIME_WEAVER_BEAN_NAME)) {
      beanFactory.addBeanPostProcessor(new LoadTimeWeaverAwareProcessor(beanFactory));
      beanFactory.setTempClassLoader(new ContextTypeMatchClassLoader(beanFactory.getBeanClassLoader()));
    }
  }
复制代码

首先我们要知道beanFactoryPostProcessor接口是spring的扩展接口,从名字也可以看出,是 beanFactory的扩展接口。在刷新容器之前,该接口可用来修改bean元数据信息。具体实现方式,我们继续跟着上述执行逻辑便知。 继续跟进上面invokeBeanFactoryPostProcessors方法,第一行很关键:

PostProcessorRegistrationDelegate.invokeBeanFactoryPostProcessors(beanFactory, getBeanFactoryPostProcessors());
复制代码

一个比较核心的代理类出现了,AbstractApplicationContext委托执行post processors任务的工具类而在项目启动时会委托什么任务呢?

或许你还记得第一篇博客中介绍的SpringApplication类中applyInitializers(context);方法吧,它会将三个默认的内部类加入到 spring 容器DefaultListableBeanFactory中,如下:

//设置配置警告
ConfigurationWarningsApplicationContextInitializer$ConfigurationWarningsPostProcessor
SharedMetadataReaderFactoryContextInitializer$CachingMetadataReaderFactoryPostProcessor
ConfigFileApplicationListener$PropertySourceOrderingPostProcessor
复制代码

来看一下具体任务执行细节,跟进invokeBeanFactoryPostProcessors方法:

if (beanFactory instanceof BeanDefinitionRegistry) {
      BeanDefinitionRegistry registry = (BeanDefinitionRegistry) beanFactory;
      List<BeanFactoryPostProcessor> regularPostProcessors = new LinkedList<>();
      List<BeanDefinitionRegistryPostProcessor> registryProcessors = new LinkedList<>();
      //这里开始遍历上面三个内部类,如果属于BeanDefinitionRegistryPostProcessor 子类,
      //加入到bean注册的集合,否则加入到 regularPostProcessors中,从名字可以看出是有规律集合。
      for (BeanFactoryPostProcessor postProcessor : beanFactoryPostProcessors) {
        if (postProcessor instanceof BeanDefinitionRegistryPostProcessor) {
          BeanDefinitionRegistryPostProcessor registryProcessor =
              (BeanDefinitionRegistryPostProcessor) postProcessor;
          registryProcessor.postProcessBeanDefinitionRegistry(registry);
          registryProcessors.add(registryProcessor);
        }
        else {
          regularPostProcessors.add(postProcessor);
        }
      }
      // Do not initialize FactoryBeans here: We need to leave all regular beans
      // uninitialized to let the bean factory post-processors apply to them!
      // Separate between BeanDefinitionRegistryPostProcessors that implement
      // PriorityOrdered, Ordered, and the rest.
      List<BeanDefinitionRegistryPostProcessor> currentRegistryProcessors = new ArrayList<>();
      // First, invoke the BeanDefinitionRegistryPostProcessors that implement PriorityOrdered.
      String[] postProcessorNames =
          beanFactory.getBeanNamesForType(BeanDefinitionRegistryPostProcessor.class, true, false);
      //首先执行类型为PriorityOrdered的BeanDefinitionRegistryPostProcessor
      //PriorityOrdered类型表明为优先执行
      for (String ppName : postProcessorNames) {
        if (beanFactory.isTypeMatch(ppName, PriorityOrdered.class)) {
          //获取对应的bean
          currentRegistryProcessors.add(beanFactory.getBean(ppName, BeanDefinitionRegistryPostProcessor.class));
          //用来存储已经执行过的`BeanDefinitionRegistryPostProcessor`       
          processedBeans.add(ppName);
        }
      }
      sortPostProcessors(currentRegistryProcessors, beanFactory);
      registryProcessors.addAll(currentRegistryProcessors);
      invokeBeanDefinitionRegistryPostProcessors(currentRegistryProcessors, registry);
      currentRegistryProcessors.clear();
      // Next, invoke the BeanDefinitionRegistryPostProcessors that implement Ordered.
      postProcessorNames = beanFactory.getBeanNamesForType(BeanDefinitionRegistryPostProcessor.class, true, false);
      //其次执行类型为Ordered的BeanDefinitionRegistryPostProcessor
      //Ordered表明按顺序执行
      for (String ppName : postProcessorNames) {
        if (!processedBeans.contains(ppName) && beanFactory.isTypeMatch(ppName, Ordered.class)) {
          currentRegistryProcessors.add(beanFactory.getBean(ppName, BeanDefinitionRegistryPostProcessor.class));
          processedBeans.add(ppName);
        }
      }
      sortPostProcessors(currentRegistryProcessors, beanFactory);
      registryProcessors.addAll(currentRegistryProcessors);
      invokeBeanDefinitionRegistryPostProcessors(currentRegistryProcessors, registry);
      currentRegistryProcessors.clear();
      // Finally, invoke all other BeanDefinitionRegistryPostProcessors until no further ones appear.
      boolean reiterate = true;
      //循环中执行类型不为PriorityOrdered,Ordered类型的BeanDefinitionRegistryPostProcessor
      while (reiterate) {
        reiterate = false;
        postProcessorNames = beanFactory.getBeanNamesForType(BeanDefinitionRegistryPostProcessor.class, true, false);
        for (String ppName : postProcessorNames) {
          if (!processedBeans.contains(ppName)) {
            currentRegistryProcessors.add(beanFactory.getBean(ppName, BeanDefinitionRegistryPostProcessor.class));
            processedBeans.add(ppName);
            reiterate = true;
          }
        }
        sortPostProcessors(currentRegistryProcessors, beanFactory);
        registryProcessors.addAll(currentRegistryProcessors);
        invokeBeanDefinitionRegistryPostProcessors(currentRegistryProcessors, registry);
        currentRegistryProcessors.clear();
      }
      // Now, invoke the postProcessBeanFactory callback of all processors handled so far.
      //执行父类方法,优先执行注册处理类
      invokeBeanFactoryPostProcessors(registryProcessors, beanFactory);
      //执行有规则处理类
      invokeBeanFactoryPostProcessors(regularPostProcessors, beanFactory);
    }
复制代码

来分析一下核心代码:

String[] postProcessorNames =beanFactory.getBeanNamesForType(BeanDefinitionRegistryPostProcessor.class, true, false);
复制代码

这行代码通过类型BeanDefinitionRegistryPostProcessor获取的处理类名称为: "org.springframework.context.annotation.internalConfigurationAnnotationProcessor" 而在源码中却搜不到internalConfigurationAnnotationProcessor类,为什么呢?最初看这块代码确实迷惑了半天。 在第一篇博客中,当启动springBoot,创建springBoot容器上下文AnnotationConfigEmbeddedWebApplicationContext时,会装配几个默认bean:

public AnnotationConfigEmbeddedWebApplicationContext() {
    //在这里装配
    this.reader = new AnnotatedBeanDefinitionReader(this);
    this.scanner = new ClassPathBeanDefinitionScanner(this);
  }
复制代码

继续跟进会执行registerAnnotationConfigProcessors方法:

public static final String CONFIGURATION_ANNOTATION_PROCESSOR_BEAN_NAME =
      "org.springframework.context.annotation.internalConfigurationAnnotationProcessor";
  //将 internalConfigurationAnnotationProcessor 对应的类包装成 RootBeanDefinition 加载到容器
  if (!registry.containsBeanDefinition(CONFIGURATION_ANNOTATION_PROCESSOR_BEAN_NAME)) {
      RootBeanDefinition def = new RootBeanDefinition(ConfigurationClassPostProcessor.class);
      def.setSource(source);
      beanDefs.add(registerPostProcessor(registry, def, CONFIGURATION_ANNOTATION_PROCESSOR_BEAN_NAME));
    }
复制代码

到这里,答案清晰浮现。internalConfigurationAnnotationProcessor为bean名称,容器中真正的类则是ConfigurationClassPostProcessor

继续后面流程,获取ConfigurationClassPostProcessor后,开始执行BeanDefinitionRegistryPostProcessor:

//开始执行装配逻辑
invokeBeanDefinitionRegistryPostProcessors(priorityOrderedPostProcessors, registry);
复制代码

3)开始执行自动配置逻辑(启动类指定的配置,非默认配置):

如上如:首先获得ConfigurationClassParser,这个是所有配置类的解析类,比较核心。所有的解析逻辑在parser.parse(candidates);中,我们详细的来看一下:

public void parse(Set<BeanDefinitionHolder> configCandidates) {
    this.deferredImportSelectors = new LinkedList<DeferredImportSelectorHolder>();
    for (BeanDefinitionHolder holder : configCandidates) {
      BeanDefinition bd = holder.getBeanDefinition();
      try {
        //是否是注解类
        if (bd instanceof AnnotatedBeanDefinition) {
          parse(((AnnotatedBeanDefinition) bd).getMetadata(), holder.getBeanName());
        }
        else if (bd instanceof AbstractBeanDefinition && ((AbstractBeanDefinition) bd).hasBeanClass()) {
          parse(((AbstractBeanDefinition) bd).getBeanClass(), holder.getBeanName());
        }
        else {
          parse(bd.getBeanClassName(), holder.getBeanName());
        }
      }
      catch (BeanDefinitionStoreException ex) {
        throw ex;
      }
      catch (Exception ex) {
        throw new BeanDefinitionStoreException(
            "Failed to parse configuration class [" + bd.getBeanClassName() + "]", ex);
      }
    }
    //执行配置类
    processDeferredImportSelectors();
  }
复制代码

继续跟进parse方法:

protected void processConfigurationClass(ConfigurationClass configClass) throws IOException {
    //...省略不核心代码
    // Recursively process the configuration class and its superclass hierarchy.
    SourceClass sourceClass = asSourceClass(configClass);
    do {
      //循环处理bean,如果有父类,则处理父类。直至结束。
      sourceClass = doProcessConfigurationClass(configClass, sourceClass);
    }
    while (sourceClass != null);
    this.configurationClasses.put(configClass, configClass);
  }
复制代码

继续跟进doProcessConfigurationClass方法,该方法可以说是 spring 框架支持注解配置的核心逻辑了,来看看:

protected final SourceClass doProcessConfigurationClass(ConfigurationClass configClass, SourceClass sourceClass) throws IOException {
        //处理内部类逻辑,由于传来的参数是我们的启动类,不含内部类,所以跳过。
        processMemberClasses(configClass, sourceClass);
        // Process any @PropertySource annotations
        //针对属性配置的解析
        for (AnnotationAttributes propertySource : AnnotationConfigUtils.attributesForRepeatable(
                sourceClass.getMetadata(), PropertySources.class, org.springframework.context.annotation.PropertySource.class)) {
            if (this.environment instanceof ConfigurableEnvironment) {
                processPropertySource(propertySource);
            }
            else {
                logger.warn("Ignoring @PropertySource annotation on [" + sourceClass.getMetadata().getClassName() +
                        "]. Reason: Environment must implement ConfigurableEnvironment");
            }
        }
        //这里是根据启动类 @ComponentScan 注解来扫描项目中的bean
        AnnotationAttributes componentScan = AnnotationConfigUtils.attributesFor(sourceClass.getMetadata(), ComponentScan.class);
        if (componentScan != null && !this.conditionEvaluator.shouldSkip(sourceClass.getMetadata(), ConfigurationPhase.REGISTER_BEAN)) {
            // The config class is annotated with @ComponentScan -> perform the scan immediately
            Set<BeanDefinitionHolder> scannedBeanDefinitions =
                    this.componentScanParser.parse(componentScan, sourceClass.getMetadata().getClassName());
            // Check the set of scanned definitions for any further config classes and parse recursively if necessary
            //遍历我们项目中的bean,如果是注解定义的bean,则进一步解析
            for (BeanDefinitionHolder holder : scannedBeanDefinitions) {
                //判断是否是注解bean
                if (ConfigurationClassUtils.checkConfigurationClassCandidate(holder.getBeanDefinition(), this.metadataReaderFactory)) {
                    //这里是关键,递归解析。所有的bean,如果有注解,会进一步解析注解中包含的bean
                    parse(holder.getBeanDefinition().getBeanClassName(), holder.getBeanName());
                }
            }
        }
        // Process any @Import annotations
        //这里又是一个递归解析,获取导入的配置类。很多情况下,导入的配置类中会同样包含导入类注解。
        processImports(configClass, sourceClass, getImports(sourceClass), true);
        // Process any @ImportResource annotations
        //解析导入的 xml 配置类
        if (sourceClass.getMetadata().isAnnotated(ImportResource.class.getName())) {
            AnnotationAttributes importResource = AnnotationConfigUtils.attributesFor(sourceClass.getMetadata(), ImportResource.class);
            String[] resources = importResource.getAliasedStringArray("locations", ImportResource.class, sourceClass);
            Class<? extends BeanDefinitionReader> readerClass = importResource.getClass("reader");
            for (String resource : resources) {
                String resolvedResource = this.environment.resolveRequiredPlaceholders(resource);
                configClass.addImportedResource(resolvedResource, readerClass);
            }
        }
        // Process individual @Bean methods
        Set<MethodMetadata> beanMethods = sourceClass.getMetadata().getAnnotatedMethods(Bean.class.getName());
        for (MethodMetadata methodMetadata : beanMethods) {
            configClass.addBeanMethod(new BeanMethod(methodMetadata, configClass));
        }
        // 获取接口中的默认方法,1.8以上的处理逻辑
        for (SourceClass ifc : sourceClass.getInterfaces()) {
            beanMethods = ifc.getMetadata().getAnnotatedMethods(Bean.class.getName());
            for (MethodMetadata methodMetadata : beanMethods) {
                if (!methodMetadata.isAbstract()) {
                    // A default method or other concrete method on a Java 8+ interface...
                    configClass.addBeanMethod(new BeanMethod(methodMetadata, configClass));
                }
            }
        }
        // Process superclass, if any
        //如果该类有父类,则继续返回。上层方法判断不为空,则继续递归执行。
        if (sourceClass.getMetadata().hasSuperClass()) {
            String superclass = sourceClass.getMetadata().getSuperClassName();
            if (!superclass.startsWith("java") && !this.knownSuperclasses.containsKey(superclass)) {
                this.knownSuperclasses.put(superclass, configClass);
                // Superclass found, return its annotation metadata and recurse
                return sourceClass.getSuperClass();
            }
        }
        // No superclass -> processing is complete
        //递归实现,superclass为空,则结束递归中的循环
        return null;
    }
复制代码

来看一下获取导入配置类的逻辑:

processImports(configClass, sourceClass, getImports(sourceClass), true);
复制代码

跟进getImports方法:

可以看到我自定义的bean以导入的方式被加载进去了。另外processImports方法执行逻辑和上述parse方法类似,同样采用递归处理,这里就不做展开了。

4)开始执行 SpringBoot 默认配置逻辑

继续回到ConfigurationClassParser中的parse方法,回到该方法的最后一步:

public void parse(Set<BeanDefinitionHolder> configCandidates) {
    //...
    //开始执行默认配置
    processDeferredImportSelectors();
  }
复制代码

继续跟进该方法processDeferredImportSelectors

private void processDeferredImportSelectors() {
    List<DeferredImportSelectorHolder> deferredImports = this.deferredImportSelectors;
    this.deferredImportSelectors = null;
    Collections.sort(deferredImports, DEFERRED_IMPORT_COMPARATOR);
    for (DeferredImportSelectorHolder deferredImport : deferredImports) {
      ConfigurationClass configClass = deferredImport.getConfigurationClass();
      try {
        //获取配置类
        String[] imports = deferredImport.getImportSelector().selectImports(configClass.getMetadata());
        //再次递归解析配置类
        processImports(configClass, asSourceClass(configClass), asSourceClasses(imports), false);
      }
      catch (BeanDefinitionStoreException ex) {
        throw ex;
      }
      catch (Throwable ex) {
        throw new BeanDefinitionStoreException("Failed to process import candidates for configuration class [" +
            configClass.getMetadata().getClassName() + "]", ex);
      }
    }
  }
复制代码

getImportSelector()方法获取的 selector对象为EnableAutoConfigurationImportSelector,继续跟进该对象的selectImports方法:

@Override
  public String[] selectImports(AnnotationMetadata metadata) {
    try {
      AnnotationAttributes attributes = getAttributes(metadata);
      //获取默认配置类
      List<String> configurations = getCandidateConfigurations(metadata,
          attributes);
      configurations = removeDuplicates(configurations);
      Set<String> exclusions = getExclusions(metadata, attributes);
      configurations.removeAll(exclusions);
      configurations = sort(configurations);
      recordWithConditionEvaluationReport(configurations, exclusions);
      return configurations.toArray(new String[configurations.size()]);
    }
    catch (IOException ex) {
      throw new IllegalStateException(ex);
    }
  }
复制代码

这里的处理方式,前面的博客中已经详细介绍过了,通过class类型来获取spring.factories中的指定类,class类型为:EnableAutoConfiguration

protected Class<?> getSpringFactoriesLoaderFactoryClass() {
    return EnableAutoConfiguration.class;
  }
复制代码

springBoot为我们提供的所有配置类如下,大概100多个:

在获取到springBoot提供的配置后,再次调用processImports方法进行递归解析,根据我们自定义的配置文件,进行选择性配置。

这么多的配置类,不可能全部进行加载,项目也用不了这么多。选择的规则是什么呢?

后续会有完整博文详细介绍。

springBoot自动化装配流程就先介绍到这里。



目录
相关文章
消息中间件 缓存 监控
28 0
|
18天前
|
IDE Java 开发工具
还在为繁琐的配置头疼吗?一文教你如何用 Spring Boot 快速启动,让开发效率飙升,从此告别加班——打造你的首个轻量级应用!
【9月更文挑战第2天】Spring Boot 是一款基于 Spring 框架的简化开发工具包,采用“约定优于配置”的原则,帮助开发者快速创建独立的生产级应用程序。本文将指导您完成首个 Spring Boot 项目的搭建过程,包括环境配置、项目初始化、添加依赖、编写控制器及运行应用。首先需确保 JDK 版本不低于 8,并安装支持 Spring Boot 的现代 IDE,如 IntelliJ IDEA 或 Eclipse。
57 5
|
20天前
|
Java Spring 开发者
解锁 Spring Boot 自动化配置的黑科技:带你走进一键配置的高效开发新时代,再也不怕繁琐设置!
【8月更文挑战第31天】Spring Boot 的自动化配置机制极大简化了开发流程,使开发者能专注业务逻辑。通过 `@SpringBootApplication` 注解组合,特别是 `@EnableAutoConfiguration`,Spring Boot 可自动激活所需配置。例如,添加 JPA 依赖后,只需在 `application.properties` 配置数据库信息,即可自动完成 JPA 和数据源设置。这一机制基于多种条件注解(如 `@ConditionalOnClass`)实现智能配置。深入理解该机制有助于提升开发效率并更好地解决问题。
34 0
|
14天前
|
运维 Ubuntu Devops
自动化运维工具的魅力:Ansible入门
【9月更文挑战第5天】在快速变化的IT世界里,自动化运维不再是可选项,而是必需品。Ansible,一款简单却强大的自动化工具,正成为众多DevOps工程师的首选。本文将带你了解Ansible的基本概念、安装步骤以及如何编写简单的Playbook,从而开启你的自动化之旅。
60 35
|
11天前
|
存储 弹性计算 运维
自动化监控和响应ECS系统事件
阿里云提供的ECS系统事件用于记录云资源信息,如实例启停、到期通知等。为实现自动化运维,如故障处理与动态调度,可使用云助手插件`ecs-tool-event`。该插件定时获取并转化ECS事件为日志存储,便于监控与响应,无需额外开发,适用于大规模集群管理。详情及示例可见链接文档。
|
4天前
|
机器学习/深度学习 运维 安全
构建高效运维体系:从自动化到智能化的演进之路
在数字化转型的浪潮中,运维管理作为信息技术基础设施的重要支柱,正经历着从传统手工操作向自动化、智能化的深刻变革。本文将探讨如何通过引入自动化工具和平台,实现运维流程的标准化与效率提升;进而利用大数据分析和人工智能技术,迈向预测性维护和智能决策支持的高级阶段。通过案例分析,揭示成功转型的关键因素,为运维专业人士提供一套可借鉴的升级路径。
|
2天前
|
机器学习/深度学习 人工智能 运维
构建高效运维体系:从自动化到智能化的演进之旅
在当今数字化时代,运维作为信息技术领域的核心组成部分,其重要性日益凸显。随着企业业务的不断扩展和技术的日新月异,传统手工运维方式已难以满足现代IT架构的需求。因此,构建一个高效、智能的运维体系成为业界共识。本文将探讨如何通过自动化和智能化手段,实现运维效率的质的飞跃,并分享一些成功案例与实践经验。
|
7天前
|
机器学习/深度学习 运维 监控
构建高效运维体系:从自动化到智能化的演进
在当今信息技术飞速发展的时代,运维领域正经历着从传统手动操作向高度自动化和智能化转变。本文旨在探讨如何通过集成自动化工具、实施持续集成与持续部署(CI/CD)、采用容器化技术和探索AIOps实践,构建一个高效、可靠的运维体系。我们将分析这些技术如何相互配合,提升运维效率,降低系统故障率,并实现快速响应市场变化的能力。通过案例分析和最佳实践的分享,本文将为IT专业人员提供一套实用的指南,帮助他们在数字化转型的浪潮中,保持运维工作的前瞻性和竞争力。
|
8天前
|
机器学习/深度学习 数据采集 运维
智能化运维:打造高效、自动化的IT系统
在数字化转型的浪潮中,企业对于IT系统的依赖程度日益加深。如何确保系统的高效运行和快速响应,成为摆在每一个IT管理者面前的难题。本文将探讨智能化运维的概念、实施步骤及其带来的变革,旨在为读者提供一套构建自动化、智能化IT运维体系的思路和方法。
|
8天前
|
机器学习/深度学习 数据采集 人工智能
智能化运维的探索之旅:从自动化到人工智能
在数字化浪潮中,运维领域正经历一场革命。本文将带你领略从传统手动操作到自动化脚本,再到集成人工智能的智能运维平台的演变之路。我们将探讨如何通过技术创新提升效率、降低成本并增强系统的可靠性和安全性。文章不仅分享技术演进的故事,还提供了实现智能化运维的实践策略和未来趋势的展望。