Scipy 高级教程——统计学

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: Scipy 高级教程——统计学【1月更文挑战第11篇】

Python Scipy 高级教程:统计学

Scipy 提供了强大的统计学工具,用于描述、分析和推断数据的分布和性质。本篇博客将深入介绍 Scipy 中的统计学功能,并通过实例演示如何应用这些工具。

1. 描述性统计

描述性统计是统计学中最基本的任务之一,用于总结和描述数据的基本特征。

import numpy as np
from scipy.stats import describe

# 生成一组数据
data = np.random.normal(size=100)

# 使用 describe 函数获取描述性统计信息
stats_info = describe(data)

print("描述性统计信息:")
print(stats_info)

在这个例子中,我们生成了一组正态分布的随机数据,并使用 describe 函数获取数据的描述性统计信息,包括均值、标准差、最小值、最大值等。

2. 假设检验

假设检验用于判断数据集中的统计差异是否显著。Scipy 提供了多种假设检验的实现,如 t 检验、卡方检验等。

from scipy.stats import ttest_ind

# 生成两组数据
group1 = np.random.normal(0, 1, size=50)
group2 = np.random.normal(1, 1, size=50)

# 使用 t 检验判断两组数据的均值是否显著不同
t_statistic, p_value = ttest_ind(group1, group2)

print("t 统计量:", t_statistic)
print("p 值:", p_value)

在这个例子中,我们生成了两组数据,并使用 ttest_ind 函数进行 t 检验,判断两组数据的均值是否显著不同。

3. 方差分析

方差分析用于比较多组数据之间的均值是否存在显著差异。Scipy 提供了 f_oneway 函数进行一元方差分析。

from scipy.stats import f_oneway

# 生成三组数据
group1 = np.random.normal(0, 1, size=50)
group2 = np.random.normal(1, 1, size=50)
group3 = np.random.normal(2, 1, size=50)

# 使用一元方差分析判断三组数据的均值是否存在显著差异
f_statistic, p_value = f_oneway(group1, group2, group3)

print("F 统计量:", f_statistic)
print("p 值:", p_value)

在这个例子中,我们生成了三组数据,并使用 f_oneway 函数进行一元方差分析,判断三组数据的均值是否存在显著差异。

4. 线性回归

线性回归用于建立变量之间的线性关系。Scipy 提供了 linregress 函数进行线性回归分析。

from scipy.stats import linregress
import matplotlib.pyplot as plt

# 生成一组随机数据
x = np.random.rand(100)
y = 2 * x + 1 + np.random.normal(scale=0.2, size=100)

# 使用 linregress 函数进行线性回归分析
slope, intercept, r_value, p_value, std_err = linregress(x, y)

# 绘制原始数据和回归直线
plt.scatter(x, y, label='原始数据')
plt.plot(x, slope * x + intercept, color='red', label='回归直线')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.show()

print("斜率:", slope)
print("截距:", intercept)
print("相关系数:", r_value)
print("p 值:", p_value)

在这个例子中,我们生成了一组带有噪声的随机数据,并使用 linregress 函数进行线性回归分析,最后绘制了原始数据和回归直线。

5. 总结

通过本篇博客的介绍,你可以更好地理解和使用 Scipy 中的统计学工具。这些工具在描述性统计、假设检验、方差分析、线性回归等方面具有广泛的应用。在实际应用中,根据具体问题选择合适的统计方法将有助于提高数据分析的准确性和可靠性。希望这篇博客对你有所帮助!

目录
相关文章
|
23天前
|
数据可视化 DataX Python
Seaborn 教程-绘图函数
Seaborn 教程-绘图函数
47 8
|
23天前
Seaborn 教程-主题(Theme)
Seaborn 教程-主题(Theme)
72 7
|
23天前
|
Python
Seaborn 教程-模板(Context)
Seaborn 教程-模板(Context)
47 4
|
23天前
|
数据可视化 Python
Seaborn 教程
Seaborn 教程
45 5
|
2月前
|
Python
SciPy 教程 之 Scipy 显著性检验 9
SciPy 教程之显著性检验:介绍显著性检验的基本概念、目的及在SciPy中的实现方法。通过scipy.stats模块进行显著性检验,包括正态性检验(使用偏度和峰度),并提供代码示例展示如何计算数据集的偏度和峰度。
39 2
|
2月前
|
Python
SciPy 教程 之 Scipy 显著性检验 9
SciPy 教程之 Scipy 显著性检验第9部分,介绍了显著性检验的基本概念、作用及原理,通过样本信息判断假设是否成立。着重讲解了使用scipy.stats模块进行显著性检验的方法,包括正态性检验中的偏度和峰度计算,以及如何利用normaltest()函数评估数据是否符合正态分布。示例代码展示了如何计算一组随机数的偏度和峰度。
34 1
|
2月前
|
BI Python
SciPy 教程 之 Scipy 显著性检验 8
本教程介绍SciPy中显著性检验的应用,包括如何利用scipy.stats模块进行显著性检验,以判断样本与总体假设间的差异是否显著。通过示例代码展示了如何使用describe()函数获取数组的统计描述信息,如观测次数、最小最大值、均值、方差等。
34 1
|
2月前
|
数据采集 数据可视化 数据挖掘
深入浅出:使用Python进行数据分析的基础教程
【10月更文挑战第41天】本文旨在为初学者提供一个关于如何使用Python语言进行数据分析的入门指南。我们将通过实际案例,了解数据处理的基本步骤,包括数据的导入、清洗、处理、分析和可视化。文章将用浅显易懂的语言,带领读者一步步掌握数据分析师的基本功,并在文末附上完整的代码示例供参考和实践。
|
2月前
|
Python
SciPy 教程 之 Scipy 显著性检验 6
显著性检验是统计学中用于判断样本与总体假设间是否存在显著差异的方法。SciPy的scipy.stats模块提供了执行显著性检验的工具,如T检验,用于比较两组数据的均值是否来自同一分布。通过ttest_ind()函数,可以获取两样本的t统计量和p值,进而判断差异是否显著。示例代码展示了如何使用该函数进行T检验并输出结果。
31 1
|
2月前
|
Python
SciPy 教程 之 Scipy 显著性检验 5
显著性检验用于判断样本与总体假设间的差异是否由随机变异引起,或是假设与真实情况不符所致。SciPy通过scipy.stats模块提供显著性检验功能,P值用于衡量数据接近极端程度,与alpha值对比以决定统计显著性。
36 0