Spark SQL案例【电商购买数据分析】

简介: Spark SQL案例【电商购买数据分析】

数据说明

Spark 数据分析 (Scala)

import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, SparkSession}
import org.apache.spark.{SparkConf, SparkContext}
import java.io.{File, PrintWriter}
object Taobao {
  case class Info(userId: Long,itemId: Long,action: String,time: String)
  def main(args: Array[String]): Unit = {
    // 使用2个CPU核心
    val conf = new SparkConf().setMaster("local[2]").setAppName("tao bao product")
    val spark = SparkSession.builder().config(conf).getOrCreate()
    import spark.implicits._
    val sc = spark.sparkContext
    // 从本地文件系统加载文件生成RDD对象
    val rdd: RDD[Array[String]] = sc.textFile("data/practice2/Processed_UserBehavior.csv").map(_.split(","))
    // RDD 转为 DataFrame对象
    val df: DataFrame = rdd.map(attr => Info(attr(0).trim.toInt, attr(1).trim.toInt, attr(2), attr(3))).toDF()
    // Spark 数据分析
    //1.用户行为信息统计
    val behavior_count: DataFrame = df.groupBy("action").count()
    val result1 = behavior_count.toJSON.collectAsList().toString
//    val writer1 = new PrintWriter(new File("data/practice2/result1.json"))
//    writer1.write(result1)
//    writer1.close()
    //2.销量前十的商品信息统计
    val top_10_item:Array[(String,Int)] = df.filter(df("action") === "buy").select(df("itemId"))
      .rdd.map(v => (v(0).toString,1))
      .reduceByKey(_+_)
      .sortBy(_._2,false)
      .take(10)
    val result2 = sc.parallelize(top_10_item).toDF().toJSON.collectAsList().toString
//    val writer2 = new PrintWriter(new File("data/practice2/result2.json"))
//    writer2.write(result2)
//    writer2.close()
    //3.购物数量前十的用户信息统计
    val top_10_user: Array[(String,Int)] = df.filter(df("action") === "buy").select(df("userId"))
      .rdd.map(v => (v(0).toString, 1))
      .reduceByKey(_ + _)
      .sortBy(_._2, false)
      .take(10)
    val result3 = sc.parallelize(top_10_user).toDF().toJSON.collectAsList().toString
//    val writer3 = new PrintWriter(new File("data/practice2/result3.json"))
//    writer3.write(result3)
//    writer3.close()
    // 4.时间段内平台商品销量统计
    val buy_order_by_date: Array[(String,Int)] = df.filter(df("action") === "buy").select(df("time"))
      .rdd.map(v => (v.toString().replace("[","").replace("]","").split(" ")(0),1)
    ).reduceByKey(_+_).sortBy(_._1).collect()
    //转为dataframe
//    buy_order_by_date.foreach(println)
    /*
    (2017-11-25,21747)
    (2017-11-26,22265)
    (2017-11-27,24583)
    (2017-11-28,23153)
    (2017-11-29,24102)
    (2017-11-30,23994)
    (2017-12-01,23153)
    (2017-12-02,28512)
     */
    val result4 = sc.parallelize(buy_order_by_date).toDF().toJSON.collectAsList().toString
    val writer4 = new PrintWriter(new File("data/practice2/result4.json"))
    writer4.write(result4)
    writer4.close()
    sc.stop()
    spark.stop()
  }
}

数据可视化(pyecharts)

1、 用户行为数据分析

2、销量前 10 的商品数据

3、用户购买量前 10

4、时间段商品销量波动


目录
打赏
0
0
0
0
37
分享
相关文章
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
113 0
电商数据分析的方法
电商数据分析涵盖从业务需求理解到数据呈现的全流程。初学者应循序渐进,掌握数据清洗、转换等技能,Python是重要工具。社交媒体营销分析关注用户参与度和KOL影响。实战教程如《2019电商数据分析师实战项目》提供Excel、SQL及Tableau应用案例,帮助巩固理论知识。代码示例展示了如何使用Pandas和SQLAlchemy进行销售数据分析,计算转化率。 (注:联系方式和感谢语已省略以符合要求)
电商数据分析的方法
数据分析经典案例重现:使用DataWorks Notebook 实现Kaggle竞赛之房价预测,成为数据分析大神!
Python是目前当之无愧的数据分析第一语言,大量的数据科学家使用Python来完成各种各样的数据科学任务。本文以Kaggle竞赛中的房价预测为例,结合DataWorks Notebook,完成数据加载、数据探索、数据可视化、数据清洗、特征分析、特征处理、机器学习、回归预测等步骤,主要Python工具是Pandas和SKLearn。本文中仅仅使用了线性回归这一最基本的机器学习模型,读者可以自行尝试其他更加复杂模型,比如随机森林、支持向量机、XGBoost等。
Spark SQL向量化执行引擎框架Gluten-Velox在AArch64使能和优化
本文摘自 Arm China的工程师顾煜祺关于“在 Arm 平台上使用 Native 算子库加速 Spark”的分享,主要内容包括以下四个部分: 1.技术背景 2.算子库构成 3.算子操作优化 4.未来工作
213 0
常用电商商品数据API接口(item get)概述,数据分析以及上货
电商商品数据API接口(item get)是电商平台上用于提供商品详细信息的接口。这些接口允许开发者或系统以编程方式获取商品的详细信息,包括但不限于商品的标题、价格、库存、图片、销量、规格参数、用户评价等。这些信息对于电商业务来说至关重要,是商品数据分析、价格监控、上货策略制定等工作的基础。
【赵渝强老师】Spark SQL的数据模型:DataFrame
本文介绍了在Spark SQL中创建DataFrame的三种方法。首先,通过定义case class来创建表结构,然后将CSV文件读入RDD并关联Schema生成DataFrame。其次,使用StructType定义表结构,同样将CSV文件读入RDD并转换为Row对象后创建DataFrame。最后,直接加载带有格式的数据文件(如JSON),通过读取文件内容直接创建DataFrame。每种方法都包含详细的代码示例和解释。
淘宝商品详情数据接口:解锁电商数据分析新密码
在数字化时代,电商竞争激烈,精准的数据分析成为制胜关键。淘宝商品详情数据接口如同一把神奇的钥匙,为商家提供商品名称、价格、销量、评价等详细信息,助力洞察市场趋势、优化商品策略、提升运营效率。通过实时更新的数据,商家可以及时调整定价、促销和库存管理,增强竞争力。未来,该接口将带来更多智能化的数据分析工具和精准的市场预测模型,助力电商从业者在竞争中脱颖而出。
大数据-102 Spark Streaming Kafka ReceiveApproach DirectApproach 附带Producer、DStream代码案例
大数据-102 Spark Streaming Kafka ReceiveApproach DirectApproach 附带Producer、DStream代码案例
93 0

热门文章

最新文章