深入了解Linux内核跟踪:ftrace基础教程

简介: 深入了解Linux内核跟踪:ftrace基础教程

前言:我们做内核开发的时候,我们经常要去跟踪linux内核的函数调用关系,对于我们来说ftrace是一个十分好用的工具,值得我们好好学习。ftrace不只是一个函数跟踪工具,它的跟踪能力之强大,还能调试和分析诸如延迟、意外代码路径、性能问题等一大堆问题。它也是一种很好的学习工具。

一,什么是ftrace

首先,在学习ftrace之前,我们要知道它是什么?根据linux ftrace的详细介绍,ftrace是一个linux内部的一个trace工具,用于帮助开发者和系统设计者知道内核当前正在干什么,从而更好的去分析性能问题。

1.1 ftrace的由来

ftrace是由Steven Rostedy和Ingo Molnar在内核2.6.27版本中引入的,那个时候,systemTap已经开始崭露头角,其它的trace工具包括LTTng等已经发展多年,那么为什么人们还需要开发一个trace工具呢?

SystemTap项目是 Linux 社区对 SUN Dtrace 的反应,目标是达到甚至超越 Dtrace 。因此 SystemTap 设计比较复杂,Dtrace 作为 SUN 公司的一个项目开发了多年才最终稳定发布,况且得到了 Solaris 内核中每个子系统开发人员的大力支持。SystemTap 想要赶超 Dtrace,困难不仅是一样,而且更大,因此她始终处在不断完善自身的状态下,在真正的产品环境,人们依然无法放心的使用她。不当的使用和 SystemTap 自身的不完善都有可能导致系统崩溃。

Ftrace的设计目标简单,本质上是一种静态代码插装技术不需要支持某种编程接口让用户自定义 trace 行为。静态代码插装技术更加可靠,不会因为用户的不当使用而导致内核崩溃。ftrace 代码量很小,稳定可靠。

同时Ftrace 有重大的创新:

  • Ftrace 只需要在函数入口插入一个外部调用:mcount
  • Ftrace 巧妙的拦截了函数返回的地址,从而可以在运行时先跳到一个事先准备好的统一出口,记录各类信息,然后再返回原来的地址
  • Ftrace 在链接完成以后,把所有插入点地址都记录到一张表中,然后默认把所有插入点都替换成为空指令(nop),因此默认情况下 Ftrace 的开销几乎是 0
  • Ftrace 可以在运行时根据需要通过 Sysfs 接口使能和使用,即使在没有第三方工具的情况下也可以方便使用

1.2 ftrace 原理

ftrace的名字由function trace而来。function trace是利用gcc编译器在编译时在每个函数的入口地址放置一个probe点,这个probe点会调用一个probe函数(gcc默认调用名为mcount的函数),这样这个 probe函数会对每个执行的内核函数进行跟踪(其实有少数几个内核函数不会被跟踪),并打印log到一个内核中的环形缓存(ring buffer)中,而用户可以通过debugfs来访问这个环形缓存中的内容。

各类tracer往ftrace主框架注册,不同的trace则在不同的probe点把信息通过probe函数给送到ring buffer中,再由暴露在用户态debufs实现相关控制。其主要的框架图如下图所示

【文章福利】小编推荐自己的Linux内核技术交流群:【 865977150】整理了一些个人觉得比较好的学习书籍、视频资料共享在群文件里面,有需要的可以自行添加哦!!!

640.png

其主要由两部分构成:

  • ftrace Framework core: 其主要包括利用 debugfs 系统在 /debugfs 下建立 tracing 目录,对用户空间输出 trace 信息,并提供了一系列的控制文件
  • 一系列的 tracer:每个 tracer 完成不同的功能,ftrace 的 trace 信息保存在 ring buffer(内存缓冲区) 中,它们统一由 framework 管理

对于ftrace有两种主要的跟踪机制往缓冲区写数据:

  1. 动态探针:可以动态跟踪内核函数的调用栈,包括function tracr,function graph trace两个tracer。其原理是利用mcount机制,在内核编译时,在每个函数入口保留数个字节,然后在使用ftrace时,将保留的字节替换为需要的指令,比如跳转到需要的执行探测操作的代码。
  2. 静态探针:是在内核代码中调用ftrace提供的相应接口实现,称之为静态是因为,是在内核代码中写死的,静态编译到内核代码中的,在内核编译后,就不能再动态修改。在开启ftrace相关的内核配置选项后,内核中已经在一些关键的地方设置了静态探测点,需要使用时,即可查看到相应的信息。

ftrace利用了gcc的profile特性,gcc 的 -pg 选项将在每个函数的入口处加入对mcount的代码调用。

如果ftrace编写了自己的mcount stub函数,则可借此实现trace功能。但是,在每个内核函数入口加入trace代码,必然影响内核的性能,为了减小对内核性能的影响,ftrace支持动态trace功能。当COFNIG_DYNAMIC_FTRACE被选中后,内核编译时会调用recordmcount.pl脚本,将每个函数的地址写入一个特殊的段:__mcount_loc。

二,ftrace 控制机制

要使用 ftrace,首先就是需要将系统的 debugfs 或者 tracefs 给挂载到某个地方,幸运的是,几乎所有的 Linux 发行版,都开启了 debugfs/tracefs 的支持,所以我们也没必要去重新编译内核了。

在比较老的内核版本,譬如 CentOS 7 的上面,debugfs 通常被挂载到 /sys/kernel/debug 上面(debug 目录下面有一个 tracing 目录),而比较新的内核,则是将 tracefs 挂载到 /sys/kernel/tracing,无论是什么,我都喜欢将 tracing 目录直接 link 到 /tracing。后面都会假设直接进入了 /tracing 目录,在讲解 ftrace 的 tracer 之前,我们先来看看 tracing 目录下的文件,它们提供了对 ftrace trace 过程的控制。

tracing 目录下的文件分成了下面四类:

  1. 提示类:显示当前系统可用的event,tracer 列表
  2. 控制类:控制 ftrace 的跟踪参数
  3. 显示类:显示 trace 信息
  4. 辅助类:一些不明或者不重要的辅助信息

三,ftrace的基础用法

3.1 内核配置

ftrace 提供了不同的跟踪器,以用于不同的场合,比如跟踪内核函数调用、对上下文切换进行跟踪、查看中断被关闭的时长、跟踪内核态中的延迟以及性能问题等。

系统开发人员可以使用 ftrace 对内核进行跟踪调试,以找到内核中出现的问题的根源,方便对其进行修复。

使用 ftrace ,首先要将其编译进内核,内核源码目录下的 kernel/trace/Makefile 文件给出了 ftrace 相关的编译选项

CONFIG_FTRACE=y
CONFIG_HAVE_FUNCTION_TRACER=y
CONFIG_HAVE_FUNCTION_GRAPH_TRACER=y
CONFIG_HAVE_DYNAMIC_FTRACE=y
CONFIG_FUNCTION_TRACER=y
CONFIG_IRQSOFF_TRACER=y
CONFIG_SCHED_TRACER=y
CONFIG_ENABLE_DEFAULT_TRACERS=y
CONFIG_FTRACE_SYSCALLS=y
CONFIG_PREEMPT_TRACER=y

3.2 ftrace三板斧

  1. 设置 tracer 类型
  2. 设置 tracer 参数
  3. 使能 tracer

四,总结

Ftrace 由 RedHat 的 Steve Rostedt 负责维护。到 2.6.30 为止,ftrace 提供了不同的跟踪器,以用于不同的场合,比如跟踪内核函数调用、对上下文切换进行跟踪、查看中断被关闭的时长、跟踪内核态中的延迟以及性能问题等。

  • Function tracer Function graph tracer :跟踪函数调用
  • Schedule switch tracer :跟踪进程调度情况
  • Wakeup tracer :跟踪进程的调度延迟,即高优先级进程从进入 ready 状态到获得 CPU 的延迟时间。该 tracer 只针对实时进程。
  • Irqsoff tracer :当中断被禁止时,系统无法相应外部事件,比如键盘和鼠标,时钟也无法产生 tick 中断。这意味着系统响应延迟,irqsoff 这个 tracer 能够跟踪并记录内核中哪些函数禁止了中断,对于其中中断禁止时间最长的,irqsoff 将在 log 文件的第一行标示出来,从而使开发人员可以迅速定位造成响应延迟的罪魁祸首
  • Preemptoff tracer:和前一个 tracer 类似,preemptoff tracer 跟踪并记录禁止内核抢占的函数,并清晰地显示出禁止抢占时间最长的内核函数。
  • Preemptirqsoff tracer :同上,跟踪和记录禁止中断或者禁止抢占的内核函数,以及禁止时间最长的函数
  • Branch tracer:跟踪内核程序中的 likely/unlikely 分支预测命中率情况。Branch tracer 能够记录这些分支语句有多少次预测成功。从而为优化程序提供线索。
  • Hardware branch tracer :利用处理器的分支跟踪能力,实现硬件级别的指令跳转记录。在 x86 上,主要利用了 BTS 这个特性。
  • Initcall tracer :记录系统在 boot 阶段所调用的 init call
  • Mmiotrace tracer :记录 memory map IO 的相关信息
  • Power tracer :记录系统电源管理相关的信息
  • Sysprof tracer :缺省情况下,sysprof tracer 每隔 1 msec 对内核进行一次采样,记录函数调用和堆栈信息
  • Kernel memory tracer :内存 tracer 主要用来跟踪 slab allocator 的分配情况。包括 kfree,kmem_cache_alloc 等 API 的调用情况,用户程序可以根据 tracer 收集到的信息分析内部碎片情况,找出内存分配最频繁的代码片断,等等。
  • Workqueue statistical tracer :这是一个 statistic tracer,统计系统中所有的 workqueue 的工作情况,比如有多少个 work 被插入 workqueue,多少个已经被执行等。开发人员可以以此来决定具体的 workqueue 实现,比如是使用
  • Event tracer:跟踪系统事件,比如 timer,系统调用,中断等

Ftrace 的实现依赖于其他很多内核特性,比如 tracepoint[3],debugfs[2],kprobe[4],IRQ-Flags[5] 等。

秋招可以写进简历的6个实战项目:

相关文章
|
4天前
|
安全 Linux 测试技术
Intel Linux 内核测试套件-LKVS介绍 | 龙蜥大讲堂104期
《Intel Linux内核测试套件-LKVS介绍》(龙蜥大讲堂104期)主要介绍了LKVS的定义、使用方法、测试范围、典型案例及其优势。LKVS是轻量级、低耦合且高代码覆盖率的测试工具,涵盖20多个硬件和内核属性,已开源并集成到多个社区CICD系统中。课程详细讲解了如何使用LKVS进行CPU、电源管理和安全特性(如TDX、CET)的测试,并展示了其在实际应用中的价值。
|
25天前
|
消息中间件 Java Kafka
【手把手教你Linux环境下快速搭建Kafka集群】内含脚本分发教程,实现一键部署多个Kafka节点
本文介绍了Kafka集群的搭建过程,涵盖从虚拟机安装到集群测试的详细步骤。首先规划了集群架构,包括三台Kafka Broker节点,并说明了分布式环境下的服务进程配置。接着,通过VMware导入模板机并克隆出三台虚拟机(kafka-broker1、kafka-broker2、kafka-broker3),分别设置IP地址和主机名。随后,依次安装JDK、ZooKeeper和Kafka,并配置相应的环境变量与启动脚本,确保各组件能正常运行。最后,通过编写启停脚本简化集群的操作流程,并对集群进行测试,验证其功能完整性。整个过程强调了自动化脚本的应用,提高了部署效率。
【手把手教你Linux环境下快速搭建Kafka集群】内含脚本分发教程,实现一键部署多个Kafka节点
|
17天前
|
Ubuntu Linux 开发者
Ubuntu20.04搭建嵌入式linux网络加载内核、设备树和根文件系统
使用上述U-Boot命令配置并启动嵌入式设备。如果配置正确,设备将通过TFTP加载内核和设备树,并通过NFS挂载根文件系统。
65 15
|
1月前
|
算法 Linux
深入探索Linux内核的内存管理机制
本文旨在为读者提供对Linux操作系统内核中内存管理机制的深入理解。通过探讨Linux内核如何高效地分配、回收和优化内存资源,我们揭示了这一复杂系统背后的原理及其对系统性能的影响。不同于常规的摘要,本文将直接进入主题,不包含背景信息或研究目的等标准部分,而是专注于技术细节和实际操作。
|
1月前
|
存储 缓存 网络协议
Linux操作系统的内核优化与性能调优####
本文深入探讨了Linux操作系统内核的优化策略与性能调优方法,旨在为系统管理员和高级用户提供一套实用的指南。通过分析内核参数调整、文件系统选择、内存管理及网络配置等关键方面,本文揭示了如何有效提升Linux系统的稳定性和运行效率。不同于常规摘要仅概述内容的做法,本摘要直接指出文章的核心价值——提供具体可行的优化措施,助力读者实现系统性能的飞跃。 ####
|
1月前
|
监控 算法 Linux
Linux内核锁机制深度剖析与实践优化####
本文作为一篇技术性文章,深入探讨了Linux操作系统内核中锁机制的工作原理、类型及其在并发控制中的应用,旨在为开发者提供关于如何有效利用这些工具来提升系统性能和稳定性的见解。不同于常规摘要的概述性质,本文将直接通过具体案例分析,展示在不同场景下选择合适的锁策略对于解决竞争条件、死锁问题的重要性,以及如何根据实际需求调整锁的粒度以达到最佳效果,为读者呈现一份实用性强的实践指南。 ####
|
1月前
|
缓存 监控 网络协议
Linux操作系统的内核优化与实践####
本文旨在探讨Linux操作系统内核的优化策略与实际应用案例,深入分析内核参数调优、编译选项配置及实时性能监控的方法。通过具体实例讲解如何根据不同应用场景调整内核设置,以提升系统性能和稳定性,为系统管理员和技术爱好者提供实用的优化指南。 ####
|
1月前
|
Ubuntu Linux C++
Win10系统上直接使用linux子系统教程(仅需五步!超简单,快速上手)
本文介绍了如何在Windows 10上安装并使用Linux子系统。首先,通过应用商店安装Windows Terminal和Linux系统(如Ubuntu)。接着,在控制面板中启用“适用于Linux的Windows子系统”并重启电脑。最后,在Windows Terminal中选择安装的Linux系统即可开始使用。文中还提供了注意事项和进一步配置的链接。
46 0