【深度学习】实验07 使用TensorFlow完成逻辑回归

简介: 【深度学习】实验07 使用TensorFlow完成逻辑回归

使用TensorFlow完成逻辑回归

TensorFlow是一种开源的机器学习框架,由Google Brain团队于2015年开发。它被广泛应用于图像和语音识别、自然语言处理、推荐系统等领域。


TensorFlow的核心是用于计算的数据流图。在数据流图中,节点表示数学操作,边表示张量(多维数组)。将操作和数据组合在一起的数据流图可以使 TensorFlow 对复杂的数学模型进行优化,同时支持分布式计算。


TensorFlow提供了Python,C++,Java,Go等多种编程语言的接口,让开发者可以更便捷地使用TensorFlow构建和训练深度学习模型。此外,TensorFlow还具有丰富的工具和库,包括TensorBoard可视化工具、TensorFlow Serving用于生产环境的模型服务、Keras高层封装API等。


TensorFlow已经发展出了许多优秀的模型,如卷积神经网络、循环神经网络、生成对抗网络等。这些模型已经在许多领域取得了优秀的成果,如图像识别、语音识别、自然语言处理等。


除了开源的TensorFlow,Google还推出了基于TensorFlow的云端机器学习平台Google Cloud ML,为用户提供了更便捷的训练和部署机器学习模型的服务。

解决分类问题里最普遍的baseline model就是逻辑回归,简单同时可解释性好,使得它大受欢迎,我们来用tensorflow完成这个模型的搭建。

1. 环境设定

import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import warnings
warnings.filterwarnings("ignore")
import numpy as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import time

2. 数据读取

#使用tensorflow自带的工具加载MNIST手写数字集合
mnist = input_data.read_data_sets('./data/mnist', one_hot=True)
Extracting ./data/mnist/train-images-idx3-ubyte.gz
Extracting ./data/mnist/train-labels-idx1-ubyte.gz
Extracting ./data/mnist/t10k-images-idx3-ubyte.gz
Extracting ./data/mnist/t10k-labels-idx1-ubyte.gz
#查看一下数据维度
mnist.train.images.shape
(55000, 784)
#查看target维度
mnist.train.labels.shape
(55000, 10)

3. 准备好placeholder

batch_size = 128
X = tf.placeholder(tf.float32, [batch_size, 784], name='X_placeholder') 
Y = tf.placeholder(tf.int32, [batch_size, 10], name='Y_placeholder')

4. 准备好参数/权重

w = tf.Variable(tf.random_normal(shape=[784, 10], stddev=0.01), name='weights')
b = tf.Variable(tf.zeros([1, 10]), name="bias")
logits = tf.matmul(X, w) + b 

5. 计算多分类softmax的loss function

# 求交叉熵损失
entropy = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=Y, name='loss')
# 求平均
loss = tf.reduce_mean(entropy)

6. 准备好optimizer

这里的最优化用的是随机梯度下降,我们可以选择AdamOptimizer这样的优化器

learning_rate = 0.01
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss)

7. 在session里执行graph里定义的运算

#迭代总轮次
n_epochs = 30
with tf.Session() as sess:
    # 在Tensorboard里可以看到图的结构
    writer = tf.summary.FileWriter('../graphs/logistic_reg', sess.graph)
    start_time = time.time()
    sess.run(tf.global_variables_initializer()) 
    n_batches = int(mnist.train.num_examples/batch_size)
    for i in range(n_epochs): # 迭代这么多轮
        total_loss = 0
        for _ in range(n_batches):
            X_batch, Y_batch = mnist.train.next_batch(batch_size)
            _, loss_batch = sess.run([optimizer, loss], feed_dict={X: X_batch, Y:Y_batch}) 
            total_loss += loss_batch
        print('Average loss epoch {0}: {1}'.format(i, total_loss/n_batches))
    print('Total time: {0} seconds'.format(time.time() - start_time))
    print('Optimization Finished!')
# 测试模型
    preds = tf.nn.softmax(logits)
    correct_preds = tf.equal(tf.argmax(preds, 1), tf.argmax(Y, 1))
    accuracy = tf.reduce_sum(tf.cast(correct_preds, tf.float32))
    n_batches = int(mnist.test.num_examples/batch_size)
    total_correct_preds = 0
    for i in range(n_batches):
        X_batch, Y_batch = mnist.test.next_batch(batch_size)
        accuracy_batch = sess.run([accuracy], feed_dict={X: X_batch, Y:Y_batch}) 
        total_correct_preds += accuracy_batch[0]
    print('Accuracy {0}'.format(total_correct_preds/mnist.test.num_examples))
    writer.close()
   Average loss epoch 0: 0.36748782022571785    
   Average loss epoch 1: 0.2978815356126198    
   Average loss epoch 2: 0.27840628396797845    
   Average loss epoch 3: 0.2783186247437706    
   Average loss epoch 4: 0.2783641471138923    
   Average loss epoch 5: 0.2750668214473413           
   Average loss epoch 6: 0.2687560408126502    
   Average loss epoch 7: 0.2713795114126239    
   Average loss epoch 8: 0.2657588795522154    
   Average loss epoch 9: 0.26322007090686916    
   Average loss epoch 10: 0.26289192279735646    
   Average loss epoch 11: 0.26248606019989873       
   Average loss epoch 12: 0.2604622903056356    
   Average loss epoch 13: 0.26015280702939403    
   Average loss epoch 14: 0.2581879366319496    
   Average loss epoch 15: 0.2590309207117085    
   Average loss epoch 16: 0.2630510463581219    
   Average loss epoch 17: 0.25501730025578767    
   Average loss epoch 18: 0.2547102673000945    
   Average loss epoch 19: 0.258298404375851    
   Average loss epoch 20: 0.2549241428330784    
   Average loss epoch 21: 0.2546788509283866    
   Average loss epoch 22: 0.259556887067837    
   Average loss epoch 23: 0.25428259843365575    
   Average loss epoch 24: 0.25442713139565676    
   Average loss epoch 25: 0.2553852511383159    
   Average loss epoch 26: 0.2503043229415978    
   Average loss epoch 27: 0.25468004046828596    
   Average loss epoch 28: 0.2552785321479633    
   Average loss epoch 29: 0.2506257003663859    
   Total time: 28.603315353393555 seconds    
   Optimization Finished!    
   Accuracy 0.9187


目录
相关文章
|
5天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
111 55
|
2月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
深度学习之格式转换笔记(三):keras(.hdf5)模型转TensorFlow(.pb) 转TensorRT(.uff)格式
将Keras训练好的.hdf5模型转换为TensorFlow的.pb模型,然后再转换为TensorRT支持的.uff格式,并提供了转换代码和测试步骤。
104 3
深度学习之格式转换笔记(三):keras(.hdf5)模型转TensorFlow(.pb) 转TensorRT(.uff)格式
|
15天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
93 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
23天前
|
机器学习/深度学习 数据采集 数据可视化
TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤
本文介绍了 TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤,包括数据准备、模型定义、损失函数与优化器选择、模型训练与评估、模型保存与部署,并展示了构建全连接神经网络的具体示例。此外,还探讨了 TensorFlow 的高级特性,如自动微分、模型可视化和分布式训练,以及其在未来的发展前景。
55 5
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
78 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
1月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
81 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
84 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
25天前
|
机器学习/深度学习 人工智能 TensorFlow
基于TensorFlow的深度学习模型训练与优化实战
基于TensorFlow的深度学习模型训练与优化实战
72 0
|
1月前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
85 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
72 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练