【Python机器学习】实验04 多分类实践(基于逻辑回归)3

简介: 【Python机器学习】实验04 多分类实践(基于逻辑回归)3

2. 训练数据的准备

data=np.insert(data_x,data_x.shape[1],data_y,axis=1)
data=pd.DataFrame(data,columns=["F1","F2","F3","F4","F5","F6","target"])
data
F1 F2 F3 F4 F5 F6 target
0 2.116632 7.972800 -9.328969 -8.224605 -12.178429 5.498447 2.0
1 1.886449 4.621006 2.841595 0.431245 -2.471350 2.507833 0.0
2 2.391329 6.464609 -9.805900 -7.289968 -9.650985 6.388460 2.0
3 -1.034776 6.626886 9.031235 -0.812908 5.449855 0.134062 1.0
4 -0.481593 8.191753 7.504717 -1.975688 6.649021 0.636824 1.0
... ... ... ... ... ... ... ...
195 5.434893 7.128471 9.789546 6.061382 0.634133 5.757024 3.0
196 -0.406625 7.586001 9.322750 -1.837333 6.477815 -0.992725 1.0
197 2.031462 7.804427 -8.539512 -9.824409 -10.046935 6.918085 2.0
198 4.081889 6.127685 11.091126 4.812011 -0.005915 5.342211 3.0
199 0.985744 7.285737 -8.395940 -6.586471 -9.651765 6.651012 2.0

200 rows × 7 columns

data["target"]=data["target"].astype("int32")
data

F1
F2 F3 F4 F5 F6 target
0 2.116632 7.972800 -9.328969 -8.224605 -12.178429 5.498447 2
1 1.886449 4.621006 2.841595 0.431245 -2.471350 2.507833 0
2 2.391329 6.464609 -9.805900 -7.289968 -9.650985 6.388460 2
3 -1.034776 6.626886 9.031235 -0.812908 5.449855 0.134062 1
4 -0.481593 8.191753 7.504717 -1.975688 6.649021 0.636824 1
... ... ... ... ... ... ... ...
195 5.434893 7.128471 9.789546 6.061382 0.634133 5.757024 3
196 -0.406625 7.586001 9.322750 -1.837333 6.477815 -0.992725 1
197 2.031462 7.804427 -8.539512 -9.824409 -10.046935 6.918085 2
198 4.081889 6.127685 11.091126 4.812011 -0.005915 5.342211 3
199 0.985744 7.285737 -8.395940 -6.586471 -9.651765 6.651012 2

200 rows × 7 columns

data.insert(0,"ones",1)
data

ones
F1 F2 F3 F4 F5 F6 target
0 1 2.116632 7.972800 -9.328969 -8.224605 -12.178429 5.498447 2
1 1 1.886449 4.621006 2.841595 0.431245 -2.471350 2.507833 0
2 1 2.391329 6.464609 -9.805900 -7.289968 -9.650985 6.388460 2
3 1 -1.034776 6.626886 9.031235 -0.812908 5.449855 0.134062 1
4 1 -0.481593 8.191753 7.504717 -1.975688 6.649021 0.636824 1
... ... ... ... ... ... ... ... ...
195 1 5.434893 7.128471 9.789546 6.061382 0.634133 5.757024 3
196 1 -0.406625 7.586001 9.322750 -1.837333 6.477815 -0.992725 1
197 1 2.031462 7.804427 -8.539512 -9.824409 -10.046935 6.918085 2
198 1 4.081889 6.127685 11.091126 4.812011 -0.005915 5.342211 3
199 1 0.985744 7.285737 -8.395940 -6.586471 -9.651765 6.651012 2

200 rows × 8 columns

#第一个类别的数据
data1=data.copy()
data1.loc[data["target"]==0,"target"]=1
data1.loc[data["target"]!=0,"target"]=0
data1

ones
F1 F2 F3 F4 F5 F6 target
0 1 2.116632 7.972800 -9.328969 -8.224605 -12.178429 5.498447 0
1 1 1.886449 4.621006 2.841595 0.431245 -2.471350 2.507833 1
2 1 2.391329 6.464609 -9.805900 -7.289968 -9.650985 6.388460 0
3 1 -1.034776 6.626886 9.031235 -0.812908 5.449855 0.134062 0
4 1 -0.481593 8.191753 7.504717 -1.975688 6.649021 0.636824 0
... ... ... ... ... ... ... ... ...
195 1 5.434893 7.128471 9.789546 6.061382 0.634133 5.757024 0
196 1 -0.406625 7.586001 9.322750 -1.837333 6.477815 -0.992725 0
197 1 2.031462 7.804427 -8.539512 -9.824409 -10.046935 6.918085 0
198 1 4.081889 6.127685 11.091126 4.812011 -0.005915 5.342211 0
199 1 0.985744 7.285737 -8.395940 -6.586471 -9.651765 6.651012 0

200 rows × 8 columns

data1_x=data1.iloc[:,:data1.shape[1]-1].values
data1_y=data1.iloc[:,data1.shape[1]-1].values
data1_x.shape,data1_y.shape
((200, 7), (200,))
#第二个类别的数据
data2=data.copy()
data2.loc[data["target"]==1,"target"]=1
data2.loc[data["target"]!=1,"target"]=0
data2


ones F1 F2 F3 F4 F5 F6 target
0 1 2.116632 7.972800 -9.328969 -8.224605 -12.178429 5.498447 0
1 1 1.886449 4.621006 2.841595 0.431245 -2.471350 2.507833 0
2 1 2.391329 6.464609 -9.805900 -7.289968 -9.650985 6.388460 0
3 1 -1.034776 6.626886 9.031235 -0.812908 5.449855 0.134062 1
4 1 -0.481593 8.191753 7.504717 -1.975688 6.649021 0.636824 1
... ... ... ... ... ... ... ... ...
195 1 5.434893 7.128471 9.789546 6.061382 0.634133 5.757024 0
196 1 -0.406625 7.586001 9.322750 -1.837333 6.477815 -0.992725 1
197 1 2.031462 7.804427 -8.539512 -9.824409 -10.046935 6.918085 0
198 1 4.081889 6.127685 11.091126 4.812011 -0.005915 5.342211 0
199 1 0.985744 7.285737 -8.395940 -6.586471 -9.651765 6.651012 0

200 rows × 8 columns

data2_x=data2.iloc[:,:data2.shape[1]-1].values
data2_y=data2.iloc[:,data2.shape[1]-1].values
#第三个类别的数据
data3=data.copy()
data3.loc[data["target"]==2,"target"]=1
data3.loc[data["target"]!=2,"target"]=0
data3
ones F1 F2 F3 F4 F5 F6 target
0 1 2.116632 7.972800 -9.328969 -8.224605 -12.178429 5.498447 1
1 1 1.886449 4.621006 2.841595 0.431245 -2.471350 2.507833 0
2 1 2.391329 6.464609 -9.805900 -7.289968 -9.650985 6.388460 1
3 1 -1.034776 6.626886 9.031235 -0.812908 5.449855 0.134062 0
4 1 -0.481593 8.191753 7.504717 -1.975688 6.649021 0.636824 0
... ... ... ... ... ... ... ... ...
195 1 5.434893 7.128471 9.789546 6.061382 0.634133 5.757024 0
196 1 -0.406625 7.586001 9.322750 -1.837333 6.477815 -0.992725 0
197 1 2.031462 7.804427 -8.539512 -9.824409 -10.046935 6.918085 1
198 1 4.081889 6.127685 11.091126 4.812011 -0.005915 5.342211 0
199 1 0.985744 7.285737 -8.395940 -6.586471 -9.651765 6.651012 1

200 rows × 8 columns

data3_x=data3.iloc[:,:data3.shape[1]-1].values
data3_y=data3.iloc[:,data3.shape[1]-1].values
#第四个类别的数据
data4=data.copy()
data4.loc[data["target"]==3,"target"]=1
data4.loc[data["target"]!=3,"target"]=0
data4


ones F1 F2 F3 F4 F5 F6 target
0 1 2.116632 7.972800 -9.328969 -8.224605 -12.178429 5.498447 0
1 1 1.886449 4.621006 2.841595 0.431245 -2.471350 2.507833 0
2 1 2.391329 6.464609 -9.805900 -7.289968 -9.650985 6.388460 0
3 1 -1.034776 6.626886 9.031235 -0.812908 5.449855 0.134062 0
4 1 -0.481593 8.191753 7.504717 -1.975688 6.649021 0.636824 0
... ... ... ... ... ... ... ... ...
195 1 5.434893 7.128471 9.789546 6.061382 0.634133 5.757024 1
196 1 -0.406625 7.586001 9.322750 -1.837333 6.477815 -0.992725 0
197 1 2.031462 7.804427 -8.539512 -9.824409 -10.046935 6.918085 0
198 1 4.081889 6.127685 11.091126 4.812011 -0.005915 5.342211 1
199 1 0.985744 7.285737 -8.395940 -6.586471 -9.651765 6.651012 0

200 rows × 8 columns

data4_x=data4.iloc[:,:data4.shape[1]-1].values
data4_y=data4.iloc[:,data4.shape[1]-1].values

3. 定义假设函数、代价函数和梯度下降算法

def sigmoid(z):
    return 1 / (1 + np.exp(-z))
def h(X,w):
    z=X@w
    h=sigmoid(z)
    return h
#代价函数构造
def cost(X,w,y):
    #当X(m,n+1),y(m,),w(n+1,1)
    y_hat=sigmoid(X@w)
    right=np.multiply(y.ravel(),np.log(y_hat).ravel())+np.multiply((1-y).ravel(),np.log(1-y_hat).ravel())
    cost=-np.sum(right)/X.shape[0]
    return cost
def grandient(X,y,iter_num,alpha):
    y=y.reshape((X.shape[0],1))
    w=np.zeros((X.shape[1],1))
    cost_lst=[]  
    for i in range(iter_num):
        y_pred=h(X,w)-y
        temp=np.zeros((X.shape[1],1))
        for j in range(X.shape[1]):
            right=np.multiply(y_pred.ravel(),X[:,j])
            gradient=1/(X.shape[0])*(np.sum(right))
            temp[j,0]=w[j,0]-alpha*gradient
        w=temp
        cost_lst.append(cost(X,w,y.ravel()))
    return w,cost_lst

4. 学习这四个分类模型

import matplotlib.pyplot as plt
#初始化超参数
iter_num,alpha=600000,0.001
#训练第1个模型
w1,cost_lst1=grandient(data1_x,data1_y,iter_num,alpha)
plt.plot(range(iter_num),cost_lst1,"b-o")
[<matplotlib.lines.Line2D at 0x25624eb08e0>]


#训练第2个模型
w2,cost_lst2=grandient(data2_x,data2_y,iter_num,alpha)
plt.plot(range(iter_num),cost_lst2,"b-o")
[<matplotlib.lines.Line2D at 0x25631b87a60>]


#训练第3个模型
w3,cost_lst3=grandient(data3_x,data3_y,iter_num,alpha)
plt.plot(range(iter_num),cost_lst3,"b-o")
[<matplotlib.lines.Line2D at 0x2562bcdfac0>]


#训练第4个模型
w4,cost_lst4=grandient(data4_x,data4_y,iter_num,alpha)
plt.plot(range(iter_num),cost_lst4,"b-o")
[<matplotlib.lines.Line2D at 0x25631ff4ee0>]

5. 利用模型进行预测

data_x


array([[ 2.11663151e+00,  7.97280013e+00, -9.32896918e+00,
        -8.22460526e+00, -1.21784287e+01,  5.49844655e+00],
       [ 1.88644899e+00,  4.62100554e+00,  2.84159548e+00,
         4.31244563e-01, -2.47135027e+00,  2.50783257e+00],
       [ 2.39132949e+00,  6.46460915e+00, -9.80590050e+00,
        -7.28996786e+00, -9.65098460e+00,  6.38845956e+00],
       ...,
       [ 2.03146167e+00,  7.80442707e+00, -8.53951210e+00,
        -9.82440872e+00, -1.00469351e+01,  6.91808489e+00],
       [ 4.08188906e+00,  6.12768483e+00,  1.10911262e+01,
         4.81201082e+00, -5.91530191e-03,  5.34221079e+00],
       [ 9.85744105e-01,  7.28573657e+00, -8.39593964e+00,
        -6.58647097e+00, -9.65176507e+00,  6.65101187e+00]])
data_x=np.insert(data_x,0,1,axis=1)
data_x.shape
(200, 7)
w3.shape
(7, 1)
multi_pred=pd.DataFrame(zip(h(data_x,w1).ravel(),h(data_x,w2).ravel(),h(data_x,w3).ravel(),h(data_x,w4).ravel()))
multi_pred
0 1 2 3
0 0.020436 4.556248e-15 9.999975e-01 2.601227e-27
1 0.820488 4.180906e-05 3.551499e-05 5.908691e-05
2 0.109309 7.316201e-14 9.999978e-01 7.091713e-24
3 0.036608 9.999562e-01 1.048562e-09 5.724854e-03
4 0.003075 9.999292e-01 2.516742e-09 6.423038e-05
... ... ... ... ...
195 0.017278 3.221293e-06 3.753372e-14 9.999943e-01
196 0.003369 9.999966e-01 6.673394e-10 2.281428e-03
197 0.000606 1.118174e-13 9.999941e-01 1.780212e-28
198 0.013072 4.999118e-05 9.811154e-14 9.996689e-01
199 0.151548 1.329623e-13 9.999447e-01 2.571989e-24

200 rows × 4 columns

6. 计算准确率

np.sum(np.argmax(multi_pred.values,axis=1)==data_y.ravel())/len(data)
1.0


目录
相关文章
机器学习/深度学习 算法 自动驾驶
237 0
|
1月前
|
存储 人工智能 算法
Python实现简易成语接龙小游戏:从零开始的趣味编程实践
本项目将中国传统文化与编程思维相结合,通过Python实现成语接龙游戏,涵盖数据结构、算法设计与简单AI逻辑,帮助学习者在趣味实践中掌握编程技能。
156 0
|
1月前
|
大数据 数据处理 数据安全/隐私保护
Python3 迭代器与生成器详解:从入门到实践
简介:本文深入解析Python中处理数据序列的利器——迭代器与生成器。通过通俗语言与实战案例,讲解其核心原理、自定义实现及大数据处理中的高效应用。
92 0
|
2月前
|
数据采集 Web App开发 JSON
Python爬虫基本原理与HTTP协议详解:从入门到实践
本文介绍了Python爬虫的核心知识,涵盖HTTP协议基础、请求与响应流程、常用库(如requests、BeautifulSoup)、反爬应对策略及实战案例(如爬取豆瓣电影Top250),帮助读者系统掌握数据采集技能。
211 0
|
2月前
|
传感器 数据采集 监控
Python生成器与迭代器:从内存优化到协程调度的深度实践
简介:本文深入解析Python迭代器与生成器的原理及应用,涵盖内存优化技巧、底层协议实现、生成器通信机制及异步编程场景。通过实例讲解如何高效处理大文件、构建数据流水线,并对比不同迭代方式的性能特点,助你编写低内存、高效率的Python代码。
142 0
|
2月前
|
人工智能 自然语言处理 安全
Python构建MCP服务器:从工具封装到AI集成的全流程实践
MCP协议为AI提供标准化工具调用接口,助力模型高效操作现实世界。
517 1
|
2月前
|
传感器 大数据 API
Python数字限制在指定范围内:方法与实践
在Python编程中,限制数字范围是常见需求,如游戏属性控制、金融计算和数据过滤等场景。本文介绍了五种主流方法:基础条件判断、数学运算、装饰器模式、类封装及NumPy数组处理,分别适用于不同复杂度和性能要求的场景。每种方法均有示例代码和适用情况说明,帮助开发者根据实际需求选择最优方案。
107 0
|
2月前
|
API 数据安全/隐私保护 开发者
Python自定义异常:从入门到实践的轻松指南
在Python开发中,自定义异常能提升错误处理的精准度与代码可维护性。本文通过银行系统、电商库存等实例,详解如何创建和使用自定义异常,涵盖异常基础、进阶技巧、最佳实践与真实场景应用,助你写出更专业、易调试的代码。
113 0
|
9月前
|
存储 人工智能 运维
【01】做一个精美的打飞机小游戏,浅尝阿里云通义灵码python小游戏开发AI编程-之飞机大战小游戏上手实践-优雅草央千澈-用ai开发小游戏尝试-分享源代码和游戏包
【01】做一个精美的打飞机小游戏,浅尝阿里云通义灵码python小游戏开发AI编程-之飞机大战小游戏上手实践-优雅草央千澈-用ai开发小游戏尝试-分享源代码和游戏包
505 48
【01】做一个精美的打飞机小游戏,浅尝阿里云通义灵码python小游戏开发AI编程-之飞机大战小游戏上手实践-优雅草央千澈-用ai开发小游戏尝试-分享源代码和游戏包
|
10月前
|
数据可视化 算法 数据挖掘
Python量化投资实践:基于蒙特卡洛模拟的投资组合风险建模与分析
蒙特卡洛模拟是一种利用重复随机抽样解决确定性问题的计算方法,广泛应用于金融领域的不确定性建模和风险评估。本文介绍如何使用Python和EODHD API获取历史交易数据,通过模拟生成未来价格路径,分析投资风险与收益,包括VaR和CVaR计算,以辅助投资者制定合理决策。
572 15

推荐镜像

更多