阿里云大数据ACA及ACP复习题(421~430)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介: 本人备考阿里云大数据考试时自行收集准备的题库,纯手工整理的,能够覆盖到今年7月份,应该是目前最新的,发成文章希望大家能一起学习,不要花冤枉钱去买题库背了,也希望大家能够顺利通关ACA和ACP考试(自己整理解析也需要时间,可能有更新不及时的情况哈)

421.在搭建数据仓库、进行日常数据分析的过程中,用户通常会注重数据质量,如下关于数据质量的描述,哪项是错误的?( D )
A:数据质量是数据分析结论有效性和准确性的基础,也是很重要的前提和保障
B:为了获得可靠的数据,企业必须密切关注数据质量
C:数据质量是直接影响系统应用成功的关键因素之一
D:大部分情况下数据质量问题可以忽略,不会直接影响系统效用

解析:数据质量是数据分析的前提;数据加密为了数据安全;数据质量的重要性,直接影响系统能否成功;数据质量问题不能忽略

422.在某个客户管理系统中,客户年龄(具体年龄取值)在客户信息表和客户分群信息表(记录了年龄层次)中信息有差异,此种数据主要体现了哪种类型的数质量问题?( D )
A:缺失值
B:重复值
C:数据完整性
D:数据不一致

解析:信息有差异,代表数据一致性不足

423.分析师小王为公司预测某种产品销量,目标是将下个周期的预测误差控制在10%以内,并洞察价格和促销方法对该产品销量的影响。小王使用了公司中一直在使用的预测模型后,发现预测非常不准,原来是因为该产品的促销周期跟其他大多数产品不一样。正确的销售预测流程是确定目标>整理数据>选择方法>建立模型>编写报告。对于小王的疏忽,最准确的描述是( C )
A:小王没有问清楚该项目的目标
B:小王没有分析和整理好原始数据
C:小王选择了错误的预测方法
D:小王的建模调参水平不行

解析:目标是将下个周期的预测误差控制在10%以内,并洞察价格和促销方法对该产品销量的影响。目标明确;小王使用了公司中一直在使用的预测模型后,发现预测非常不准,原来是因为该产品的促销周期跟其他大多数产品不一样,以上说明公司产品特殊不应该使用和其他产品一样的预测模型

424.在进行数据分析之前,需要对数据进行处理,下列哪项不是数据预处理操作?( D )
A:数据清洗,去噪声和无关数据
B:数据集成 ,将多个数据源中的数据结合起来存放在一个一致的数据存储中
C:数据变换,把原始数据转换成为适合数据挖掘的形式
D:选择合适的算法模型进行数据建模

解析:数据预处理:数据清洗、数据集成、数据变换、数据规约

425.DataWorks的任务运维工作在运维中心模块进行,模块的主要功能不包含下列哪个选项内容?( D )
A:运维概览
B:任务列表
C:智能监控/智能诊断
D:任务调度

解析:运维中心的主要功能包含运维概览、任务列表、智能监控/智能诊断、任务运维

426.小明想要使用DataV为公司设计一个实时监控型可视化大屏,以下哪个( D )数据源可以配合DataV实现大屏制作。
A:Hbase
B:Hive
C:MaxCompute
D:RDS for MySql

解析
DataV产品支持的数据源包括:AnalyticDB for MySQL、RDS for MySQL、兼容MySQL数据库、RDS for PostgreSQL、RDS for SQLServer、CSV文件、DataV数据代理服务、API、静态JSON、OpenAPI、对象存储OSS、简单日志服务SLS、Table Store、Oracle、阿里云API网关、业务实时监控、交互式分析 Hologres、Elastic Search、区块链服务、宜搭数据源、PolarDB for MySQL、PolarDB for PostgreSQL、PolarDB for Oracle、OceanBase for MySQL和数据集等。

427.遇到样本不均衡时,如何处理。比如正样本包含95700条数据,负样本包含5000条数据,合适的处理方法是( ABC )?
A:从正样本中抽样5000条数据
B:将负样本重复20次,并打乱顺序
C:提升负样本的权重
D:为了让模型自主学习数据规律,将全部数据用于训练

解析:常用的处理样本不均衡的操作包括:上采样、下采样和提升权重

428.关于PAI-DSW读写数据大文件(大于300M)下载描述正确的是( AD )。
A:如果数据在DSW提供的默认空间里,先将数据拷贝到挂载的NAS中再下载
B:使用DSW前端下载工具下载
C:可以直接下载
D:通过服务器FTP方式下载,只支持用户自己挂载的NAS下载

解析:如果文件不超过300M,建议直接使用DSW前端下载工具下载,直接在DSW中右键文件,点击download
如果文件大于300M,建议通过服务器FTP方式下载,目前这种下载方式只支持用户自己挂载的NAS下载,如果数据在DSW提供的默认5GB存储空间中,可先将数据拷贝到自己挂载的NAS中再下载。

429.Sqoop是用于在Hadoop与传统的数据库之间进行数据的传输的工具,其特点有( ABC )
A:高性能
B:自动类型转换
C:自动传播元信息
D:弹性伸缩

解析:Sqoop的特点: 性能高、自动类型转换、自动转换元信息

430.HBase是一个能完成海量数据的存储的工具,支持线上业务的实时查询,基于列族的数据库,以下选项中,关于HBase描述正确的?( AD )
A:是一种NoSQL数据库
B:不是开源的
C:是面向对象的
D:高可用的

解析
HBase 是一种面向列的开源 NoSQL 数据库。 HBase是一个高可靠性、高性能、列存储、可伸缩、实时读写的分布式数据库系统,基于列的存储模式适合于存储非结构化数据。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
2月前
|
人工智能 分布式计算 DataWorks
连续四年!阿里云领跑中国公有云大数据平台
近日,国际数据公司(IDC)发布《中国大数据平台市场份额,2023:数智融合时代的真正到来》报告——2023年中国大数据平台公有云服务市场规模达72.2亿元人民币,其中阿里巴巴市场份额保持领先,占比达40.2%,连续四年排名第一。
163 12
|
2月前
|
人工智能 Cloud Native 数据管理
重磅升级,阿里云发布首个“Data+AI”驱动的一站式多模数据平台
阿里云发布首个AI多模数据管理平台DMS,助力业务决策提效10倍
241 17
|
2月前
|
SQL 人工智能 大数据
阿里云牵头起草!首个大数据批流融合国家标准发布
近日,国家市场监督管理总局、国家标准化管理委员会正式发布大数据领域首个批流融合国家标准GB/T 44216-2024《信息技术 大数据 批流融合计算技术要求》,该标准由阿里云牵头起草,并将于2025年2月1日起正式实施。
73 7
|
2月前
|
SQL 人工智能 大数据
首个大数据批流融合国家标准正式发布,阿里云为牵头起草单位!
近日,国家市场监督管理总局、国家标准化管理委员会正式发布大数据领域首个批流融合国家标准 GB/T 44216-2024《信息技术 大数据 批流融合计算技术要求》,该标准由阿里云牵头起草,并将于2025年2月1日起正式实施。
|
2月前
|
存储 SQL 分布式计算
Java连接阿里云MaxCompute例
要使用Java连接阿里云MaxCompute数据库,首先需在项目中添加MaxCompute JDBC驱动依赖,推荐通过Maven管理。避免在代码中直接写入AccessKey,应使用环境变量或配置文件安全存储。示例代码展示了如何注册驱动、建立连接及执行SQL查询。建议使用RAM用户提升安全性,并根据需要配置时区和公网访问权限。具体步骤和注意事项请参考阿里云官方文档。
|
2月前
|
机器学习/深度学习 数据可视化 大数据
阿里云大数据的应用示例
阿里云大数据应用平台为企业提供高效数据处理与业务洞察工具,涵盖Quick BI、DataV及PAI等核心产品。DT203课程通过实践教学,帮助学员掌握数据可视化、报表设计及机器学习分析技能,提升数据驱动决策能力。Quick BI简化复杂数据分析,DataV打造震撼可视化大屏,PAI支持全面的数据挖掘与算法应用。课程面向CSP、ISV及数据工程师等专业人士,为期两天,结合面授与实验,助力企业加速数字化转型。完成课程后,学员将熟练使用阿里云工具进行数据处理与分析。[了解更多](https://edu.aliyun.com/training/DT203)
|
3月前
|
机器学习/深度学习 分布式计算 BI
MaxCompute 与阿里云其他服务的协同工作
【8月更文第31天】在当今的数据驱动时代,企业需要处理和分析海量数据以获得有价值的洞察。阿里云提供了一系列的服务来满足不同层次的需求,从数据存储到高级分析。MaxCompute(原名 ODPS)作为阿里云的大规模数据处理平台,提供了强大的计算能力和丰富的功能,可以与阿里云的其他服务无缝集成,形成完整的大数据解决方案。本文将探讨 MaxCompute 如何与其他阿里云服务协同工作,包括存储服务 OSS、数据分析服务 Quick BI 以及机器学习平台 PAI。
40 1
|
21天前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势
|
22天前
|
分布式计算 关系型数据库 MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
43 3
|
1天前
|
存储 安全 大数据
大数据隐私保护:用户数据的安全之道
【10月更文挑战第31天】在大数据时代,数据的价值日益凸显,但用户隐私保护问题也愈发严峻。本文探讨了大数据隐私保护的重要性、面临的挑战及有效解决方案,旨在为企业和社会提供用户数据安全的指导。通过加强透明度、采用加密技术、实施数据最小化原则、加强访问控制、采用隐私保护技术和提升用户意识,共同推动大数据隐私保护的发展。