深度学习实践篇 第十一章:imgaug

简介: 简要介绍imgaug和基础用法。

参考教程:
https://imgaug.readthedocs.io/en/latest/source/jupyter_notebooks.html

概述

imgaug是一个使用的数据增强工具,不仅提供了常见的形状和颜色的增强方法,还提供了一些特殊的增强方法,比如说针对keypoint和bounding boxes的增强。

imgaug中的大部分增强方法,都要求你的输入图像是uint8的numpy arrays,并且最好是RGB图像。更具体的类型要求可以参考dtype_support.html

接下来我们按照imgaug提供的notebook中的处理顺序,来看一下各种类型的增强方法。

针对图片的增强

首先我们来看一下基础的针对图像的增强方法,我们使用imageio读入一张图片,使用imageio直接读入的图像通道就是按照RGB排列的,如果使用opencv,需要自行转换成RGB。
image.png

基础使用样例

imgaug中提供了多种增强方法,并且使用起来很简单,只需要实例化某方法并设定好参数后,再将你的图片传入即可。

以放射变化为例:
image.png

我们可以看一下仿射变化的源码:

classimgaug.augmenters.geometric.Affine(scale=None, translate_percent=None, translate_px=None, rotate=None, shear=None, order=1, cval=0, mode='constant', fit_output=False, backend='auto', seed=None, name=None, random_state='deprecated', deterministic='deprecated')

它的输入参数有多个,包括:

  1. scale: 缩放
  2. translate_percent:平移比例
  3. translate_px:平移像素值
  4. rotate:旋转角度
  5. shear:错切角度

在上面的例子中,我们使用的参数是rotate = (-25,25),意思就是旋转的范围在-25度和25度之间。

也可以将一组图像作为输入,要注意这时输入参数是images而不再是image
image.png

并且imgaug中,images是支持不同大小的图像的。

base class: augment

class imgaug.augmenters.meta.Augmenter(seed=None, name=None, random_state='deprecated', deterministic='deprecated')

基本上各种增强方法都是继承了Augmenter这个类,在刚刚的使用例子中提到如果传参使用image就是增强单张图像,使用images就是多张,我们看看源码具体是如何实现的。那么这就首先要来看Augmenter这个class的call()方法。

def __call__(self, *args, **kwargs):
        """Alias for :func:`~imgaug.augmenters.meta.Augmenter.augment`."""
        return self.augment(*args, **kwargs)

它实际上调用的是本身的augment的方法。

def augment(self, return_batch=False, hooks=None, **kwargs):

augment方法的固定传参只有两个,一个是return_batch,默认是False。另一个是hooks。这两个参数我们都可以暂时不管它。

在具体的实现上,这个方法对你的传入参数其实是有要求的。

expected_keys = ["images", "heatmaps", "segmentation_maps",
                         "keypoints", "bounding_boxes", "polygons",
                         "line_strings"]
        expected_keys_call = ["image"] + expected_keys

它列举了一些需要被增强的数据的类型,包括图像,关键点等。你传入的kwargs中至少要有一个key包含在expected_keys中。

接下来会构建一个batch,batch中就是你想增强的数据。并按照你设定的方法进行增强处理。

batch = UnnormalizedBatch(
            images=images,
            heatmaps=kwargs.get("heatmaps", None),
            segmentation_maps=kwargs.get("segmentation_maps", None),
            keypoints=kwargs.get("keypoints", None),
            bounding_boxes=kwargs.get("bounding_boxes", None),
            polygons=kwargs.get("polygons", None),
            line_strings=kwargs.get("line_strings", None)
        )
batch_aug = self.augment_batch_(batch, hooks=hooks)

for key in kwargs:
     if key == "image":
         attr = getattr(batch_aug, "images_aug")
         result.append(attr[0])
     else:
         result.append(getattr(batch_aug, "%s_aug" % (key,)))

增强的组合

在imgaug中可以将多个增强方法放在一起使用。增强方法的组合方式也有多种。

sequential

classimgaug.augmenters.meta.Sequential(children=None, random_order=False, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

Sequential的传入参数是一组augmenter,并且在使用时会顺序的执行。也就是你的第二个增强方法要增强的对象,是经过第一个增强方法增强后的结果。
如下例子:执行的顺序是仿射变化,高斯模糊,然后crop。所以你可以明显看到,旋转后空出来的黑边上也有高斯模糊的效果。
image.png

假如调换一下高斯模糊和仿射的顺序。得到的结果中黑色区域就没有模糊效果了。
image.png

someof和oneof

class imgaug.augmenters.meta.SomeOf(n=None, children=None, random_order=False, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

someof可以随机选择多个augmenter中的几个,并用于增强你给的输入图像。它的第一个传入参数n代表了你需要的subset的大小,也可以把它指定成一个tuple,比如(0,None)。None在这里表示最大值。
image.png

class imgaug.augmenters.meta.OneOf(children, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

oneof就是每次只从你给定的增强方法中选择一个来使用。
image.png

sometimes

class imgaug.augmenters.meta.Sometimes(p=0.5, then_list=None, else_list=None, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

sometimes针对的是一组图像,它的作用是只对图像中指定比例进行增强。
如下图,下图中有一半图像被添加了高斯噪声,有一半则经过了仿射变换。

image.png

增强的种类

针对图像的增强,按照实现的效果可以分为以下几类:

  1. 算术
    1. add:在原像素上加上一个值,包括Add:添加单个值,AddElementwise:给像素点添加不同的值,添加不同类型的noise等。
    2. multiply:在原像素上乘上一个值,包括Multiply:乘单个值,MultiplyElementwise:每个像素乘不同的值。
    3. cut:将图中某个区域填充成特定值。包括Cutout:填充一个矩形区域。Dropout:用0填充指定比例的像素。
    4. replace:ReplaceElementwise:用给定值填充指定比例的像素。Salt:用椒盐噪声填充像素。
    5. Invert:反转图像中所有的像素值。包括Invert:把value改为255-value。Solarize:反转超过给定阈值的像素值。
  2. 艺术
    1. cartoon:支持大小在200-800间的图像。
  3. blend
    blend: 混合两张图片。包括BlendAlpha,以代码为例,输入factor,fg,bg等。返回的结果是factor*fg+(1-factor)*bg。此外还包括BlendAlphaMask:使用一个mask,BlendAlphaElementwise:每个像素选取不同的factor。
     classimgaug.augmenters.blend.BlendAlpha(factor=(0.0, 1.0), foreground=None, background=None, per_channel=False, seed=None, name=None, random_state='deprecated', deterministic='deprecated'
    
  4. blur
    blur:对图像添加模糊效果。包括GaussianBlur:高斯模糊,AverageBlur:均值模糊,MedianBlur:中值模糊等。

  5. color

    1. ColorSpace: colorspace相关的增强算法,会进行颜色空间的转换。包括WithColorspace:从a空间转到b,在b上做增强后转回a。WithBrightnessChannels:从某空间转到一个包含亮度通道的空间,修改亮度后转回去原空间。ChangeColorspace:将图片从a空间转到b空间。Grayscale:将图片转成灰度图。
    2. Temperature:包括ChangeColorTemperature,改变图片的色调。
    3. Quantization:包括KMeansColorQuantization:使用聚类方法分配像素,并用聚类中心取代像素值。UniformColorQuantization:使用某种距离算法将像素分为N个bins。
  6. contrast
    contrast: 包括各种对比度调整算法,比如GammaContrast,SigmoidContrast等。

  7. Convolve
    convolve:包括一些可以用卷积核实现的增强操作,比如说自定义卷积核,再比如说锐化,边缘检测等。
  8. flip
    flip:包括水平翻转,垂直翻转,
  9. geometric
    geometric:一些几何变化,包括仿射,缩放,平移,旋转等。

针对关键点的增强

关键点是图像中特点的点,一般标记成位置坐标的形式。当你对图像使用几何类的增强方法时,它的像素位置会发生变化,那么关键点的位置也可能发生改变。

imgaug中的增强方法,可以将image的keypoint也作为输入,让keypoint随着图像一起改变。

image.png

图中是一个大小为(389,259)的袋鼠图片,它包括五个关键点,分别是左眼、右眼、鼻子、左手、右手。使用imgaug中提供的类将它们封装好。

  1. imgaug.augmentables.kps.Keypoint
    是一个简单的类,用于标记单个关键点。
  2. imgaug.augmentables.kps.KeypointsOnImage
    将一组关键点组合在一起,初始化时KeypointsOnImage(keypoints, shape),其中keypoints是关键点的列表,shape是对应的图像的大小。

接下来在图片和关键点上施加一个仿射变化。这个变化涉及到了平移和旋转。
可以看到关键点也随着图像的变化发生了变化。
image.png

针对包围框的增强

和关键点类似,当对图像做几何类的增强变化时,它的包围框也可能受到影响。

imgaug中的增强方法,也可以把包围框作为输入,让它随着图像一起变化。
image.png

图中是一个大小为(298,477)的图片,包括两个小动物,每个动物都有它自己的bounding box。imgaug提供了api将包围框封装起来。

  1. imgaug.augmentables.bbs.BoundingBox(x1, y1, x2, y2, label=None)
    是一个简单的类,用于标记一个包围框。
  2. imgaug.augmentables.bbs.BoundingBoxesOnImage(bounding_boxes, shape)
    包含一个图片中的一组包围框,它的传入参数有两个,第一个是包围框的list,第二个是对应的图像的shape。

接下来在图片和包围框上施加一个仿射变化。这个变化涉及到了平移和旋转。
可以看到包围框也随着图像的变化发生了变化。
image.png

相关文章
|
3天前
|
机器学习/深度学习 算法
揭秘深度学习中的对抗性网络:理论与实践
【5月更文挑战第18天】 在深度学习领域的众多突破中,对抗性网络(GANs)以其独特的机制和强大的生成能力受到广泛关注。不同于传统的监督学习方法,GANs通过同时训练生成器与判别器两个模型,实现了无监督学习下的高效数据生成。本文将深入探讨对抗性网络的核心原理,解析其数学模型,并通过案例分析展示GANs在图像合成、风格迁移及增强学习等领域的应用。此外,我们还将讨论当前GANs面临的挑战以及未来的发展方向,为读者提供一个全面而深入的视角以理解这一颠覆性技术。
|
4天前
|
机器学习/深度学习 人工智能 算法
【AI】从零构建深度学习框架实践
【5月更文挑战第16天】 本文介绍了从零构建一个轻量级的深度学习框架tinynn,旨在帮助读者理解深度学习的基本组件和框架设计。构建过程包括设计框架架构、实现基本功能、模型定义、反向传播算法、训练和推理过程以及性能优化。文章详细阐述了网络层、张量、损失函数、优化器等组件的抽象和实现,并给出了一个基于MNIST数据集的分类示例,与TensorFlow进行了简单对比。tinynn的源代码可在GitHub上找到,目前支持多种层、损失函数和优化器,适用于学习和实验新算法。
59 2
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
深度理解深度学习:从理论到实践的探索
【5月更文挑战第3天】 在人工智能的浪潮中,深度学习以其卓越的性能和广泛的应用成为了研究的热点。本文将深入探讨深度学习的核心理论,解析其背后的数学原理,并通过实际案例分析如何将这些理论应用于解决现实世界的问题。我们将从神经网络的基础结构出发,逐步过渡到复杂的模型架构,同时讨论优化算法和正则化技巧。通过本文,读者将对深度学习有一个全面而深刻的认识,并能够在实践中更加得心应手地应用这些技术。
|
6天前
|
机器学习/深度学习 人工智能 缓存
安卓应用性能优化实践探索深度学习在图像识别中的应用进展
【4月更文挑战第30天】随着智能手机的普及,移动应用已成为用户日常生活的重要组成部分。对于安卓开发者而言,确保应用流畅、高效地运行在多样化的硬件上是一大挑战。本文将探讨针对安卓平台进行应用性能优化的策略和技巧,包括内存管理、多线程处理、UI渲染效率提升以及电池使用优化,旨在帮助开发者构建更加健壮、响应迅速的安卓应用。 【4月更文挑战第30天】 随着人工智能技术的迅猛发展,深度学习已成为推动计算机视觉领域革新的核心动力。本篇文章将深入分析深度学习技术在图像识别任务中的最新应用进展,并探讨其面临的挑战与未来发展趋势。通过梳理卷积神经网络(CNN)的优化策略、转移学习的实践应用以及增强学习与生成对
|
6天前
|
机器学习/深度学习 搜索推荐 算法
推荐系统算法的研究与实践:协同过滤、基于内容的推荐和深度学习推荐模型
推荐系统算法的研究与实践:协同过滤、基于内容的推荐和深度学习推荐模型
277 1
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
从零开始学习深度学习:入门指南与实践建议
本文将引导读者进入深度学习领域的大门,从基础概念到实际应用,为初学者提供全面的学习指南和实践建议。通过系统化的学习路径规划和案例实践,帮助读者快速掌握深度学习的核心知识和技能,迈出在人工智能领域的第一步。
|
6天前
|
机器学习/深度学习 Python
有没有一些开源的深度学习项目可以帮助我实践所学的知识?
【2月更文挑战第14天】【2月更文挑战第40篇】有没有一些开源的深度学习项目可以帮助我实践所学的知识?
|
6天前
|
机器学习/深度学习 人工智能 算法
【深度学习】因果推断与机器学习的高级实践 | 数学建模
【深度学习】因果推断与机器学习的高级实践 | 数学建模
|
9月前
|
机器学习/深度学习 PyTorch 算法框架/工具
深度学习实践篇 第五章:模型保存与加载
简要介绍pytorch中模型的保存与加载。
110 0
|
6天前
|
机器学习/深度学习 人工智能 算法
基于AidLux的工业视觉少样本缺陷检测实战应用---深度学习分割模型UNET的实践部署
  工业视觉在生产和制造中扮演着关键角色,而缺陷检测则是确保产品质量和生产效率的重要环节。工业视觉的前景与发展在于其在生产制造领域的关键作用,尤其是在少样本缺陷检测方面,借助AidLux技术和深度学习分割模型UNET的实践应用,深度学习分割模型UNET的实践部署变得至关重要。
72 1